src/HOLCF/UpperPD.thy
changeset 39974 b525988432e9
parent 39970 9023b897e67a
child 39984 0300d5170622
equal deleted inserted replaced
39973:c62b4ff97bfc 39974:b525988432e9
    67 apply (subst PDPlus_commute)
    67 apply (subst PDPlus_commute)
    68 apply (simp add: 2)
    68 apply (simp add: 2)
    69 apply (simp add: upper_le_PDPlus_iff 3)
    69 apply (simp add: upper_le_PDPlus_iff 3)
    70 done
    70 done
    71 
    71 
    72 lemma pd_take_upper_chain:
       
    73   "pd_take n t \<le>\<sharp> pd_take (Suc n) t"
       
    74 apply (induct t rule: pd_basis_induct)
       
    75 apply (simp add: compact_basis.take_chain)
       
    76 apply (simp add: PDPlus_upper_mono)
       
    77 done
       
    78 
       
    79 lemma pd_take_upper_le: "pd_take i t \<le>\<sharp> t"
       
    80 apply (induct t rule: pd_basis_induct)
       
    81 apply (simp add: compact_basis.take_less)
       
    82 apply (simp add: PDPlus_upper_mono)
       
    83 done
       
    84 
       
    85 lemma pd_take_upper_mono:
       
    86   "t \<le>\<sharp> u \<Longrightarrow> pd_take n t \<le>\<sharp> pd_take n u"
       
    87 apply (erule upper_le_induct)
       
    88 apply (simp add: compact_basis.take_mono)
       
    89 apply (simp add: upper_le_PDPlus_PDUnit_iff)
       
    90 apply (simp add: upper_le_PDPlus_iff)
       
    91 done
       
    92 
       
    93 
    72 
    94 subsection {* Type definition *}
    73 subsection {* Type definition *}
    95 
    74 
    96 typedef (open) 'a upper_pd =
    75 typedef (open) 'a upper_pd =
    97   "{S::'a pd_basis set. upper_le.ideal S}"
    76   "{S::'a pd_basis set. upper_le.ideal S}"
    98 by (fast intro: upper_le.ideal_principal)
    77 by (fast intro: upper_le.ideal_principal)
    99 
    78 
   100 instantiation upper_pd :: (profinite) below
    79 instantiation upper_pd :: (sfp) below
   101 begin
    80 begin
   102 
    81 
   103 definition
    82 definition
   104   "x \<sqsubseteq> y \<longleftrightarrow> Rep_upper_pd x \<subseteq> Rep_upper_pd y"
    83   "x \<sqsubseteq> y \<longleftrightarrow> Rep_upper_pd x \<subseteq> Rep_upper_pd y"
   105 
    84 
   106 instance ..
    85 instance ..
   107 end
    86 end
   108 
    87 
   109 instance upper_pd :: (profinite) po
    88 instance upper_pd :: (sfp) po
   110 by (rule upper_le.typedef_ideal_po
    89 using type_definition_upper_pd below_upper_pd_def
   111     [OF type_definition_upper_pd below_upper_pd_def])
    90 by (rule upper_le.typedef_ideal_po)
   112 
    91 
   113 instance upper_pd :: (profinite) cpo
    92 instance upper_pd :: (sfp) cpo
   114 by (rule upper_le.typedef_ideal_cpo
    93 using type_definition_upper_pd below_upper_pd_def
   115     [OF type_definition_upper_pd below_upper_pd_def])
    94 by (rule upper_le.typedef_ideal_cpo)
   116 
    95 
   117 lemma Rep_upper_pd_lub:
    96 lemma Rep_upper_pd_lub:
   118   "chain Y \<Longrightarrow> Rep_upper_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_upper_pd (Y i))"
    97   "chain Y \<Longrightarrow> Rep_upper_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_upper_pd (Y i))"
   119 by (rule upper_le.typedef_ideal_rep_contlub
    98 using type_definition_upper_pd below_upper_pd_def
   120     [OF type_definition_upper_pd below_upper_pd_def])
    99 by (rule upper_le.typedef_ideal_rep_contlub)
   121 
   100 
   122 lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd xs)"
   101 lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd xs)"
   123 by (rule Rep_upper_pd [unfolded mem_Collect_eq])
   102 by (rule Rep_upper_pd [unfolded mem_Collect_eq])
   124 
   103 
   125 definition
   104 definition
   130   "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
   109   "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
   131 unfolding upper_principal_def
   110 unfolding upper_principal_def
   132 by (simp add: Abs_upper_pd_inverse upper_le.ideal_principal)
   111 by (simp add: Abs_upper_pd_inverse upper_le.ideal_principal)
   133 
   112 
   134 interpretation upper_pd:
   113 interpretation upper_pd:
   135   ideal_completion upper_le pd_take upper_principal Rep_upper_pd
   114   ideal_completion upper_le upper_principal Rep_upper_pd
   136 apply unfold_locales
   115 apply unfold_locales
   137 apply (rule pd_take_upper_le)
       
   138 apply (rule pd_take_idem)
       
   139 apply (erule pd_take_upper_mono)
       
   140 apply (rule pd_take_upper_chain)
       
   141 apply (rule finite_range_pd_take)
       
   142 apply (rule pd_take_covers)
       
   143 apply (rule ideal_Rep_upper_pd)
   116 apply (rule ideal_Rep_upper_pd)
   144 apply (erule Rep_upper_pd_lub)
   117 apply (erule Rep_upper_pd_lub)
   145 apply (rule Rep_upper_principal)
   118 apply (rule Rep_upper_principal)
   146 apply (simp only: below_upper_pd_def)
   119 apply (simp only: below_upper_pd_def)
       
   120 apply (rule pd_basis_countable)
   147 done
   121 done
   148 
   122 
   149 text {* Upper powerdomain is pointed *}
   123 text {* Upper powerdomain is pointed *}
   150 
   124 
   151 lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
   125 lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
   152 by (induct ys rule: upper_pd.principal_induct, simp, simp)
   126 by (induct ys rule: upper_pd.principal_induct, simp, simp)
   153 
   127 
   154 instance upper_pd :: (bifinite) pcpo
   128 instance upper_pd :: (sfp) pcpo
   155 by intro_classes (fast intro: upper_pd_minimal)
   129 by intro_classes (fast intro: upper_pd_minimal)
   156 
   130 
   157 lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
   131 lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
   158 by (rule upper_pd_minimal [THEN UU_I, symmetric])
   132 by (rule upper_pd_minimal [THEN UU_I, symmetric])
   159 
       
   160 text {* Upper powerdomain is profinite *}
       
   161 
       
   162 instantiation upper_pd :: (profinite) profinite
       
   163 begin
       
   164 
       
   165 definition
       
   166   approx_upper_pd_def: "approx = upper_pd.completion_approx"
       
   167 
       
   168 instance
       
   169 apply (intro_classes, unfold approx_upper_pd_def)
       
   170 apply (rule upper_pd.chain_completion_approx)
       
   171 apply (rule upper_pd.lub_completion_approx)
       
   172 apply (rule upper_pd.completion_approx_idem)
       
   173 apply (rule upper_pd.finite_fixes_completion_approx)
       
   174 done
       
   175 
       
   176 end
       
   177 
       
   178 instance upper_pd :: (bifinite) bifinite ..
       
   179 
       
   180 lemma approx_upper_principal [simp]:
       
   181   "approx n\<cdot>(upper_principal t) = upper_principal (pd_take n t)"
       
   182 unfolding approx_upper_pd_def
       
   183 by (rule upper_pd.completion_approx_principal)
       
   184 
       
   185 lemma approx_eq_upper_principal:
       
   186   "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (pd_take n t)"
       
   187 unfolding approx_upper_pd_def
       
   188 by (rule upper_pd.completion_approx_eq_principal)
       
   189 
   133 
   190 
   134 
   191 subsection {* Monadic unit and plus *}
   135 subsection {* Monadic unit and plus *}
   192 
   136 
   193 definition
   137 definition
   219 lemma upper_plus_principal [simp]:
   163 lemma upper_plus_principal [simp]:
   220   "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)"
   164   "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)"
   221 unfolding upper_plus_def
   165 unfolding upper_plus_def
   222 by (simp add: upper_pd.basis_fun_principal
   166 by (simp add: upper_pd.basis_fun_principal
   223     upper_pd.basis_fun_mono PDPlus_upper_mono)
   167     upper_pd.basis_fun_mono PDPlus_upper_mono)
   224 
       
   225 lemma approx_upper_unit [simp]:
       
   226   "approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>"
       
   227 apply (induct x rule: compact_basis.principal_induct, simp)
       
   228 apply (simp add: approx_Rep_compact_basis)
       
   229 done
       
   230 
       
   231 lemma approx_upper_plus [simp]:
       
   232   "approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)"
       
   233 by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp)
       
   234 
   168 
   235 interpretation upper_add: semilattice upper_add proof
   169 interpretation upper_add: semilattice upper_add proof
   236   fix xs ys zs :: "'a upper_pd"
   170   fix xs ys zs :: "'a upper_pd"
   237   show "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)"
   171   show "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)"
   238     apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp)
   172     apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp)
   305 
   239 
   306 lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
   240 lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
   307 unfolding po_eq_conv by simp
   241 unfolding po_eq_conv by simp
   308 
   242 
   309 lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
   243 lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
   310 unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp
   244 using upper_unit_Rep_compact_basis [of compact_bot]
       
   245 by (simp add: inst_upper_pd_pcpo)
   311 
   246 
   312 lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>"
   247 lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>"
   313 by (rule UU_I, rule upper_plus_below1)
   248 by (rule UU_I, rule upper_plus_below1)
   314 
   249 
   315 lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>"
   250 lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>"
   326 apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff
   261 apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff
   327                  upper_le_PDPlus_PDUnit_iff)
   262                  upper_le_PDPlus_PDUnit_iff)
   328 apply auto
   263 apply auto
   329 done
   264 done
   330 
   265 
       
   266 lemma compact_upper_unit: "compact x \<Longrightarrow> compact {x}\<sharp>"
       
   267 by (auto dest!: compact_basis.compact_imp_principal)
       
   268 
   331 lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
   269 lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
   332 unfolding profinite_compact_iff by simp
   270 apply (safe elim!: compact_upper_unit)
       
   271 apply (simp only: compact_def upper_unit_below_iff [symmetric])
       
   272 apply (erule adm_subst [OF cont_Rep_CFun2])
       
   273 done
   333 
   274 
   334 lemma compact_upper_plus [simp]:
   275 lemma compact_upper_plus [simp]:
   335   "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)"
   276   "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)"
   336 by (auto dest!: upper_pd.compact_imp_principal)
   277 by (auto dest!: upper_pd.compact_imp_principal)
   337 
   278 
   422 
   363 
   423 lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
   364 lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
   424 unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
   365 unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
   425 
   366 
   426 
   367 
   427 subsection {* Map and join *}
   368 subsection {* Map *}
   428 
   369 
   429 definition
   370 definition
   430   upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
   371   upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
   431   "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
   372   "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
   432 
       
   433 definition
       
   434   upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
       
   435   "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
       
   436 
   373 
   437 lemma upper_map_unit [simp]:
   374 lemma upper_map_unit [simp]:
   438   "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
   375   "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
   439 unfolding upper_map_def by simp
   376 unfolding upper_map_def by simp
   440 
   377 
   441 lemma upper_map_plus [simp]:
   378 lemma upper_map_plus [simp]:
   442   "upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys"
   379   "upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys"
   443 unfolding upper_map_def by simp
   380 unfolding upper_map_def by simp
   444 
   381 
   445 lemma upper_join_unit [simp]:
       
   446   "upper_join\<cdot>{xs}\<sharp> = xs"
       
   447 unfolding upper_join_def by simp
       
   448 
       
   449 lemma upper_join_plus [simp]:
       
   450   "upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss"
       
   451 unfolding upper_join_def by simp
       
   452 
       
   453 lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
   382 lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
   454 by (induct xs rule: upper_pd_induct, simp_all)
   383 by (induct xs rule: upper_pd_induct, simp_all)
   455 
   384 
   456 lemma upper_map_ID: "upper_map\<cdot>ID = ID"
   385 lemma upper_map_ID: "upper_map\<cdot>ID = ID"
   457 by (simp add: expand_cfun_eq ID_def upper_map_ident)
   386 by (simp add: expand_cfun_eq ID_def upper_map_ident)
   458 
   387 
   459 lemma upper_map_map:
   388 lemma upper_map_map:
   460   "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
   389   "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
   461 by (induct xs rule: upper_pd_induct, simp_all)
       
   462 
       
   463 lemma upper_join_map_unit:
       
   464   "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
       
   465 by (induct xs rule: upper_pd_induct, simp_all)
       
   466 
       
   467 lemma upper_join_map_join:
       
   468   "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
       
   469 by (induct xsss rule: upper_pd_induct, simp_all)
       
   470 
       
   471 lemma upper_join_map_map:
       
   472   "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
       
   473    upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
       
   474 by (induct xss rule: upper_pd_induct, simp_all)
       
   475 
       
   476 lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"
       
   477 by (induct xs rule: upper_pd_induct, simp_all)
   390 by (induct xs rule: upper_pd_induct, simp_all)
   478 
   391 
   479 lemma ep_pair_upper_map: "ep_pair e p \<Longrightarrow> ep_pair (upper_map\<cdot>e) (upper_map\<cdot>p)"
   392 lemma ep_pair_upper_map: "ep_pair e p \<Longrightarrow> ep_pair (upper_map\<cdot>e) (upper_map\<cdot>p)"
   480 apply default
   393 apply default
   481 apply (induct_tac x rule: upper_pd_induct, simp_all add: ep_pair.e_inverse)
   394 apply (induct_tac x rule: upper_pd_induct, simp_all add: ep_pair.e_inverse)
   488 apply (induct_tac x rule: upper_pd_induct, simp_all add: deflation.idem)
   401 apply (induct_tac x rule: upper_pd_induct, simp_all add: deflation.idem)
   489 apply (induct_tac x rule: upper_pd_induct)
   402 apply (induct_tac x rule: upper_pd_induct)
   490 apply (simp_all add: deflation.below monofun_cfun)
   403 apply (simp_all add: deflation.below monofun_cfun)
   491 done
   404 done
   492 
   405 
       
   406 (* FIXME: long proof! *)
       
   407 lemma finite_deflation_upper_map:
       
   408   assumes "finite_deflation d" shows "finite_deflation (upper_map\<cdot>d)"
       
   409 proof (rule finite_deflation_intro)
       
   410   interpret d: finite_deflation d by fact
       
   411   have "deflation d" by fact
       
   412   thus "deflation (upper_map\<cdot>d)" by (rule deflation_upper_map)
       
   413   have "finite (range (\<lambda>x. d\<cdot>x))" by (rule d.finite_range)
       
   414   hence "finite (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))"
       
   415     by (rule finite_vimageI, simp add: inj_on_def Rep_compact_basis_inject)
       
   416   hence "finite (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x)))" by simp
       
   417   hence "finite (Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))"
       
   418     by (rule finite_vimageI, simp add: inj_on_def Rep_pd_basis_inject)
       
   419   hence *: "finite (upper_principal ` Rep_pd_basis -` (Pow (Rep_compact_basis -` range (\<lambda>x. d\<cdot>x))))" by simp
       
   420   hence "finite (range (\<lambda>xs. upper_map\<cdot>d\<cdot>xs))"
       
   421     apply (rule rev_finite_subset)
       
   422     apply clarsimp
       
   423     apply (induct_tac xs rule: upper_pd.principal_induct)
       
   424     apply (simp add: adm_mem_finite *)
       
   425     apply (rename_tac t, induct_tac t rule: pd_basis_induct)
       
   426     apply (simp only: upper_unit_Rep_compact_basis [symmetric] upper_map_unit)
       
   427     apply simp
       
   428     apply (subgoal_tac "\<exists>b. d\<cdot>(Rep_compact_basis a) = Rep_compact_basis b")
       
   429     apply clarsimp
       
   430     apply (rule imageI)
       
   431     apply (rule vimageI2)
       
   432     apply (simp add: Rep_PDUnit)
       
   433     apply (rule range_eqI)
       
   434     apply (erule sym)
       
   435     apply (rule exI)
       
   436     apply (rule Abs_compact_basis_inverse [symmetric])
       
   437     apply (simp add: d.compact)
       
   438     apply (simp only: upper_plus_principal [symmetric] upper_map_plus)
       
   439     apply clarsimp
       
   440     apply (rule imageI)
       
   441     apply (rule vimageI2)
       
   442     apply (simp add: Rep_PDPlus)
       
   443     done
       
   444   thus "finite {xs. upper_map\<cdot>d\<cdot>xs = xs}"
       
   445     by (rule finite_range_imp_finite_fixes)
       
   446 qed
       
   447 
       
   448 subsection {* Upper powerdomain is an SFP domain *}
       
   449 
       
   450 definition
       
   451   upper_approx :: "nat \<Rightarrow> udom upper_pd \<rightarrow> udom upper_pd"
       
   452 where
       
   453   "upper_approx = (\<lambda>i. upper_map\<cdot>(udom_approx i))"
       
   454 
       
   455 lemma upper_approx: "approx_chain upper_approx"
       
   456 proof (rule approx_chain.intro)
       
   457   show "chain (\<lambda>i. upper_approx i)"
       
   458     unfolding upper_approx_def by simp
       
   459   show "(\<Squnion>i. upper_approx i) = ID"
       
   460     unfolding upper_approx_def
       
   461     by (simp add: lub_distribs upper_map_ID)
       
   462   show "\<And>i. finite_deflation (upper_approx i)"
       
   463     unfolding upper_approx_def
       
   464     by (intro finite_deflation_upper_map finite_deflation_udom_approx)
       
   465 qed
       
   466 
       
   467 definition upper_sfp :: "sfp \<rightarrow> sfp"
       
   468 where "upper_sfp = sfp_fun1 upper_approx upper_map"
       
   469 
       
   470 lemma cast_upper_sfp:
       
   471   "cast\<cdot>(upper_sfp\<cdot>A) =
       
   472     udom_emb upper_approx oo upper_map\<cdot>(cast\<cdot>A) oo udom_prj upper_approx"
       
   473 unfolding upper_sfp_def
       
   474 apply (rule cast_sfp_fun1 [OF upper_approx])
       
   475 apply (erule finite_deflation_upper_map)
       
   476 done
       
   477 
       
   478 instantiation upper_pd :: (sfp) sfp
       
   479 begin
       
   480 
       
   481 definition
       
   482   "emb = udom_emb upper_approx oo upper_map\<cdot>emb"
       
   483 
       
   484 definition
       
   485   "prj = upper_map\<cdot>prj oo udom_prj upper_approx"
       
   486 
       
   487 definition
       
   488   "sfp (t::'a upper_pd itself) = upper_sfp\<cdot>SFP('a)"
       
   489 
       
   490 instance proof
       
   491   show "ep_pair emb (prj :: udom \<rightarrow> 'a upper_pd)"
       
   492     unfolding emb_upper_pd_def prj_upper_pd_def
       
   493     using ep_pair_udom [OF upper_approx]
       
   494     by (intro ep_pair_comp ep_pair_upper_map ep_pair_emb_prj)
       
   495 next
       
   496   show "cast\<cdot>SFP('a upper_pd) = emb oo (prj :: udom \<rightarrow> 'a upper_pd)"
       
   497     unfolding emb_upper_pd_def prj_upper_pd_def sfp_upper_pd_def cast_upper_sfp
       
   498     by (simp add: cast_SFP oo_def expand_cfun_eq upper_map_map)
       
   499 qed
       
   500 
   493 end
   501 end
       
   502 
       
   503 text {* SFP of type constructor = type combinator *}
       
   504 
       
   505 lemma SFP_upper: "SFP('a upper_pd) = upper_sfp\<cdot>SFP('a)"
       
   506 by (rule sfp_upper_pd_def)
       
   507 
       
   508 
       
   509 subsection {* Join *}
       
   510 
       
   511 definition
       
   512   upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
       
   513   "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
       
   514 
       
   515 lemma upper_join_unit [simp]:
       
   516   "upper_join\<cdot>{xs}\<sharp> = xs"
       
   517 unfolding upper_join_def by simp
       
   518 
       
   519 lemma upper_join_plus [simp]:
       
   520   "upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss"
       
   521 unfolding upper_join_def by simp
       
   522 
       
   523 lemma upper_join_map_unit:
       
   524   "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
       
   525 by (induct xs rule: upper_pd_induct, simp_all)
       
   526 
       
   527 lemma upper_join_map_join:
       
   528   "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
       
   529 by (induct xsss rule: upper_pd_induct, simp_all)
       
   530 
       
   531 lemma upper_join_map_map:
       
   532   "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
       
   533    upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
       
   534 by (induct xss rule: upper_pd_induct, simp_all)
       
   535 
       
   536 end