equal
deleted
inserted
replaced
39 | verit_rule_of "trans" = Trans |
39 | verit_rule_of "trans" = Trans |
40 | verit_rule_of "false" = False |
40 | verit_rule_of "false" = False |
41 | verit_rule_of "ac_simp" = AC_Simp |
41 | verit_rule_of "ac_simp" = AC_Simp |
42 | verit_rule_of "and" = And |
42 | verit_rule_of "and" = And |
43 | verit_rule_of "not_and" = Not_And |
43 | verit_rule_of "not_and" = Not_And |
44 | verit_rule_of "and_pos" = And_Pos |
|
45 | verit_rule_of "and_neg" = And_Neg |
44 | verit_rule_of "and_neg" = And_Neg |
46 | verit_rule_of "or_pos" = Or_Pos |
45 | verit_rule_of "or_pos" = Or_Pos |
47 | verit_rule_of "or_neg" = Or_Neg |
46 | verit_rule_of "or_neg" = Or_Neg |
48 | verit_rule_of "not_equiv1" = Not_Equiv1 |
47 | verit_rule_of "not_equiv1" = Not_Equiv1 |
49 | verit_rule_of "not_equiv2" = Not_Equiv2 |
48 | verit_rule_of "not_equiv2" = Not_Equiv2 |
99 else if r = Lethe_Proof.eq_congruent_rule then Eq_Congruent |
98 else if r = Lethe_Proof.eq_congruent_rule then Eq_Congruent |
100 else if r = Lethe_Proof.eq_congruent_pred_rule then Eq_Congruent_Pred |
99 else if r = Lethe_Proof.eq_congruent_pred_rule then Eq_Congruent_Pred |
101 else if r = Lethe_Proof.theory_resolution2_rule then Theory_Resolution2 |
100 else if r = Lethe_Proof.theory_resolution2_rule then Theory_Resolution2 |
102 else if r = Lethe_Proof.th_resolution_rule then Theory_Resolution |
101 else if r = Lethe_Proof.th_resolution_rule then Theory_Resolution |
103 else if r = Lethe_Proof.equiv_pos2_rule then Equiv_pos2 |
102 else if r = Lethe_Proof.equiv_pos2_rule then Equiv_pos2 |
|
103 else if r = Lethe_Proof.and_pos_rule then And_Pos |
104 else (@{print} ("Unsupport rule", r); Unsupported) |
104 else (@{print} ("Unsupport rule", r); Unsupported) |
105 |
105 |
106 |
106 |
107 (* Combining all together *) |
107 (* Combining all together *) |
108 |
108 |