src/HOL/Analysis/T1_Spaces.thy
changeset 70196 b7ef9090feed
parent 70178 4900351361b0
child 71200 3548d54ce3ee
equal deleted inserted replaced
70195:e4abb5235c5e 70196:b7ef9090feed
   505     qed
   505     qed
   506   qed
   506   qed
   507 qed
   507 qed
   508 
   508 
   509 lemma continuous_imp_closed_map:
   509 lemma continuous_imp_closed_map:
   510    "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f\<rbrakk> \<Longrightarrow> closed_map X Y f"
   510    "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y\<rbrakk> \<Longrightarrow> closed_map X Y f"
   511   by (meson closed_map_def closedin_compact_space compactin_imp_closedin image_compactin)
   511   by (meson closed_map_def closedin_compact_space compactin_imp_closedin image_compactin)
   512 
   512 
   513 lemma continuous_imp_quotient_map:
   513 lemma continuous_imp_quotient_map:
   514    "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f; f ` (topspace X) = topspace Y\<rbrakk>
   514    "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y; f ` (topspace X) = topspace Y\<rbrakk>
   515         \<Longrightarrow> quotient_map X Y f"
   515         \<Longrightarrow> quotient_map X Y f"
   516   by (simp add: continuous_imp_closed_map continuous_closed_imp_quotient_map)
   516   by (simp add: continuous_imp_closed_map continuous_closed_imp_quotient_map)
   517 
   517 
   518 lemma continuous_imp_homeomorphic_map:
   518 lemma continuous_imp_homeomorphic_map:
   519    "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f;
   519    "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y; 
   520      f ` (topspace X) = topspace Y; inj_on f (topspace X)\<rbrakk>
   520      f ` (topspace X) = topspace Y; inj_on f (topspace X)\<rbrakk>
   521         \<Longrightarrow> homeomorphic_map X Y f"
   521         \<Longrightarrow> homeomorphic_map X Y f"
   522   by (simp add: continuous_imp_closed_map bijective_closed_imp_homeomorphic_map)
   522   by (simp add: continuous_imp_closed_map bijective_closed_imp_homeomorphic_map)
   523 
   523 
   524 lemma continuous_imp_embedding_map:
   524 lemma continuous_imp_embedding_map:
   525    "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f; inj_on f (topspace X)\<rbrakk>
   525    "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y; inj_on f (topspace X)\<rbrakk>
   526         \<Longrightarrow> embedding_map X Y f"
   526         \<Longrightarrow> embedding_map X Y f"
   527   by (simp add: continuous_imp_closed_map injective_closed_imp_embedding_map)
   527   by (simp add: continuous_imp_closed_map injective_closed_imp_embedding_map)
   528 
   528 
   529 lemma continuous_inverse_map:
   529 lemma continuous_inverse_map:
   530   assumes "compact_space X" "Hausdorff_space Y"
   530   assumes "compact_space X" "Hausdorff_space Y"