505 qed |
505 qed |
506 qed |
506 qed |
507 qed |
507 qed |
508 |
508 |
509 lemma continuous_imp_closed_map: |
509 lemma continuous_imp_closed_map: |
510 "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f\<rbrakk> \<Longrightarrow> closed_map X Y f" |
510 "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y\<rbrakk> \<Longrightarrow> closed_map X Y f" |
511 by (meson closed_map_def closedin_compact_space compactin_imp_closedin image_compactin) |
511 by (meson closed_map_def closedin_compact_space compactin_imp_closedin image_compactin) |
512 |
512 |
513 lemma continuous_imp_quotient_map: |
513 lemma continuous_imp_quotient_map: |
514 "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f; f ` (topspace X) = topspace Y\<rbrakk> |
514 "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y; f ` (topspace X) = topspace Y\<rbrakk> |
515 \<Longrightarrow> quotient_map X Y f" |
515 \<Longrightarrow> quotient_map X Y f" |
516 by (simp add: continuous_imp_closed_map continuous_closed_imp_quotient_map) |
516 by (simp add: continuous_imp_closed_map continuous_closed_imp_quotient_map) |
517 |
517 |
518 lemma continuous_imp_homeomorphic_map: |
518 lemma continuous_imp_homeomorphic_map: |
519 "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f; |
519 "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y; |
520 f ` (topspace X) = topspace Y; inj_on f (topspace X)\<rbrakk> |
520 f ` (topspace X) = topspace Y; inj_on f (topspace X)\<rbrakk> |
521 \<Longrightarrow> homeomorphic_map X Y f" |
521 \<Longrightarrow> homeomorphic_map X Y f" |
522 by (simp add: continuous_imp_closed_map bijective_closed_imp_homeomorphic_map) |
522 by (simp add: continuous_imp_closed_map bijective_closed_imp_homeomorphic_map) |
523 |
523 |
524 lemma continuous_imp_embedding_map: |
524 lemma continuous_imp_embedding_map: |
525 "\<lbrakk>compact_space X; Hausdorff_space Y; continuous_map X Y f; inj_on f (topspace X)\<rbrakk> |
525 "\<lbrakk>continuous_map X Y f; compact_space X; Hausdorff_space Y; inj_on f (topspace X)\<rbrakk> |
526 \<Longrightarrow> embedding_map X Y f" |
526 \<Longrightarrow> embedding_map X Y f" |
527 by (simp add: continuous_imp_closed_map injective_closed_imp_embedding_map) |
527 by (simp add: continuous_imp_closed_map injective_closed_imp_embedding_map) |
528 |
528 |
529 lemma continuous_inverse_map: |
529 lemma continuous_inverse_map: |
530 assumes "compact_space X" "Hausdorff_space Y" |
530 assumes "compact_space X" "Hausdorff_space Y" |