src/HOL/Groups_List.thy
changeset 64267 b9a1486e79be
parent 63882 018998c00003
child 64272 f76b6dda2e56
equal deleted inserted replaced
64265:8eb6365f5916 64267:b9a1486e79be
    71   show "comm_monoid_list plus 0" ..
    71   show "comm_monoid_list plus 0" ..
    72   then interpret sum_list: comm_monoid_list plus 0 .
    72   then interpret sum_list: comm_monoid_list plus 0 .
    73   from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp
    73   from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp
    74 qed
    74 qed
    75 
    75 
    76 sublocale setsum: comm_monoid_list_set plus 0
    76 sublocale sum: comm_monoid_list_set plus 0
    77 rewrites
    77 rewrites
    78   "monoid_list.F plus 0 = sum_list"
    78   "monoid_list.F plus 0 = sum_list"
    79   and "comm_monoid_set.F plus 0 = setsum"
    79   and "comm_monoid_set.F plus 0 = sum"
    80 proof -
    80 proof -
    81   show "comm_monoid_list_set plus 0" ..
    81   show "comm_monoid_list_set plus 0" ..
    82   then interpret setsum: comm_monoid_list_set plus 0 .
    82   then interpret sum: comm_monoid_list_set plus 0 .
    83   from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp
    83   from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp
    84   from setsum_def show "comm_monoid_set.F plus 0 = setsum" by (auto intro: sym)
    84   from sum_def show "comm_monoid_set.F plus 0 = sum" by (auto intro: sym)
    85 qed
    85 qed
    86 
    86 
    87 end
    87 end
    88 
    88 
    89 text \<open>Some syntactic sugar for summing a function over a list:\<close>
    89 text \<open>Some syntactic sugar for summing a function over a list:\<close>
   132 lemma (in monoid_add) sum_list_map_filter:
   132 lemma (in monoid_add) sum_list_map_filter:
   133   assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0"
   133   assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0"
   134   shows "sum_list (map f (filter P xs)) = sum_list (map f xs)"
   134   shows "sum_list (map f (filter P xs)) = sum_list (map f xs)"
   135   using assms by (induct xs) auto
   135   using assms by (induct xs) auto
   136 
   136 
   137 lemma (in comm_monoid_add) distinct_sum_list_conv_Setsum:
   137 lemma (in comm_monoid_add) distinct_sum_list_conv_Sum:
   138   "distinct xs \<Longrightarrow> sum_list xs = Setsum (set xs)"
   138   "distinct xs \<Longrightarrow> sum_list xs = Sum (set xs)"
   139   by (induct xs) simp_all
   139   by (induct xs) simp_all
   140 
   140 
   141 lemma sum_list_upt[simp]:
   141 lemma sum_list_upt[simp]:
   142   "m \<le> n \<Longrightarrow> sum_list [m..<n] = \<Sum> {m..<n}"
   142   "m \<le> n \<Longrightarrow> sum_list [m..<n] = \<Sum> {m..<n}"
   143 by(simp add: distinct_sum_list_conv_Setsum)
   143 by(simp add: distinct_sum_list_conv_Sum)
   144 
   144 
   145 lemma sum_list_eq_0_nat_iff_nat [simp]:
   145 lemma sum_list_eq_0_nat_iff_nat [simp]:
   146   "sum_list ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)"
   146   "sum_list ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)"
   147   by (induct ns) simp_all
   147   by (induct ns) simp_all
   148 
   148 
   198 lemma sum_list_mono:
   198 lemma sum_list_mono:
   199   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
   199   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
   200   shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)"
   200   shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)"
   201   by (induct xs) (simp, simp add: add_mono)
   201   by (induct xs) (simp, simp add: add_mono)
   202 
   202 
   203 lemma (in monoid_add) sum_list_distinct_conv_setsum_set:
   203 lemma (in monoid_add) sum_list_distinct_conv_sum_set:
   204   "distinct xs \<Longrightarrow> sum_list (map f xs) = setsum f (set xs)"
   204   "distinct xs \<Longrightarrow> sum_list (map f xs) = sum f (set xs)"
   205   by (induct xs) simp_all
   205   by (induct xs) simp_all
   206 
   206 
   207 lemma (in monoid_add) interv_sum_list_conv_setsum_set_nat:
   207 lemma (in monoid_add) interv_sum_list_conv_sum_set_nat:
   208   "sum_list (map f [m..<n]) = setsum f (set [m..<n])"
   208   "sum_list (map f [m..<n]) = sum f (set [m..<n])"
   209   by (simp add: sum_list_distinct_conv_setsum_set)
   209   by (simp add: sum_list_distinct_conv_sum_set)
   210 
   210 
   211 lemma (in monoid_add) interv_sum_list_conv_setsum_set_int:
   211 lemma (in monoid_add) interv_sum_list_conv_sum_set_int:
   212   "sum_list (map f [k..l]) = setsum f (set [k..l])"
   212   "sum_list (map f [k..l]) = sum f (set [k..l])"
   213   by (simp add: sum_list_distinct_conv_setsum_set)
   213   by (simp add: sum_list_distinct_conv_sum_set)
   214 
   214 
   215 text \<open>General equivalence between @{const sum_list} and @{const setsum}\<close>
   215 text \<open>General equivalence between @{const sum_list} and @{const sum}\<close>
   216 lemma (in monoid_add) sum_list_setsum_nth:
   216 lemma (in monoid_add) sum_list_sum_nth:
   217   "sum_list xs = (\<Sum> i = 0 ..< length xs. xs ! i)"
   217   "sum_list xs = (\<Sum> i = 0 ..< length xs. xs ! i)"
   218   using interv_sum_list_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth)
   218   using interv_sum_list_conv_sum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth)
   219 
   219 
   220 lemma sum_list_map_eq_setsum_count:
   220 lemma sum_list_map_eq_sum_count:
   221   "sum_list (map f xs) = setsum (\<lambda>x. count_list xs x * f x) (set xs)"
   221   "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) (set xs)"
   222 proof(induction xs)
   222 proof(induction xs)
   223   case (Cons x xs)
   223   case (Cons x xs)
   224   show ?case (is "?l = ?r")
   224   show ?case (is "?l = ?r")
   225   proof cases
   225   proof cases
   226     assume "x \<in> set xs"
   226     assume "x \<in> set xs"
   227     have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH)
   227     have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH)
   228     also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
   228     also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
   229     also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
   229     also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
   230       by (simp add: setsum.insert_remove eq_commute)
   230       by (simp add: sum.insert_remove eq_commute)
   231     finally show ?thesis .
   231     finally show ?thesis .
   232   next
   232   next
   233     assume "x \<notin> set xs"
   233     assume "x \<notin> set xs"
   234     hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast
   234     hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast
   235     thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>)
   235     thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>)
   236   qed
   236   qed
   237 qed simp
   237 qed simp
   238 
   238 
   239 lemma sum_list_map_eq_setsum_count2:
   239 lemma sum_list_map_eq_sum_count2:
   240 assumes "set xs \<subseteq> X" "finite X"
   240 assumes "set xs \<subseteq> X" "finite X"
   241 shows "sum_list (map f xs) = setsum (\<lambda>x. count_list xs x * f x) X"
   241 shows "sum_list (map f xs) = sum (\<lambda>x. count_list xs x * f x) X"
   242 proof-
   242 proof-
   243   let ?F = "\<lambda>x. count_list xs x * f x"
   243   let ?F = "\<lambda>x. count_list xs x * f x"
   244   have "setsum ?F X = setsum ?F (set xs \<union> (X - set xs))"
   244   have "sum ?F X = sum ?F (set xs \<union> (X - set xs))"
   245     using Un_absorb1[OF assms(1)] by(simp)
   245     using Un_absorb1[OF assms(1)] by(simp)
   246   also have "\<dots> = setsum ?F (set xs)"
   246   also have "\<dots> = sum ?F (set xs)"
   247     using assms(2)
   247     using assms(2)
   248     by(simp add: setsum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel)
   248     by(simp add: sum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel)
   249   finally show ?thesis by(simp add:sum_list_map_eq_setsum_count)
   249   finally show ?thesis by(simp add:sum_list_map_eq_sum_count)
   250 qed
   250 qed
   251 
   251 
   252 lemma sum_list_nonneg: 
   252 lemma sum_list_nonneg: 
   253     "(\<And>x. x \<in> set xs \<Longrightarrow> (x :: 'a :: ordered_comm_monoid_add) \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0"
   253     "(\<And>x. x \<in> set xs \<Longrightarrow> (x :: 'a :: ordered_comm_monoid_add) \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0"
   254   by (induction xs) simp_all
   254   by (induction xs) simp_all
   296 qed
   296 qed
   297 
   297 
   298 
   298 
   299 subsection \<open>Tools setup\<close>
   299 subsection \<open>Tools setup\<close>
   300 
   300 
   301 lemmas setsum_code = setsum.set_conv_list
   301 lemmas sum_code = sum.set_conv_list
   302 
   302 
   303 lemma setsum_set_upto_conv_sum_list_int [code_unfold]:
   303 lemma sum_set_upto_conv_sum_list_int [code_unfold]:
   304   "setsum f (set [i..j::int]) = sum_list (map f [i..j])"
   304   "sum f (set [i..j::int]) = sum_list (map f [i..j])"
   305   by (simp add: interv_sum_list_conv_setsum_set_int)
   305   by (simp add: interv_sum_list_conv_sum_set_int)
   306 
   306 
   307 lemma setsum_set_upt_conv_sum_list_nat [code_unfold]:
   307 lemma sum_set_upt_conv_sum_list_nat [code_unfold]:
   308   "setsum f (set [m..<n]) = sum_list (map f [m..<n])"
   308   "sum f (set [m..<n]) = sum_list (map f [m..<n])"
   309   by (simp add: interv_sum_list_conv_setsum_set_nat)
   309   by (simp add: interv_sum_list_conv_sum_set_nat)
   310 
   310 
   311 lemma sum_list_transfer[transfer_rule]:
   311 lemma sum_list_transfer[transfer_rule]:
   312   includes lifting_syntax
   312   includes lifting_syntax
   313   assumes [transfer_rule]: "A 0 0"
   313   assumes [transfer_rule]: "A 0 0"
   314   assumes [transfer_rule]: "(A ===> A ===> A) op + op +"
   314   assumes [transfer_rule]: "(A ===> A ===> A) op + op +"