src/HOL/BNF/Tools/bnf_util.ML
changeset 49510 ba50d204095e
parent 49509 163914705f8d
child 49536 898aea2e7a94
equal deleted inserted replaced
49509:163914705f8d 49510:ba50d204095e
       
     1 (*  Title:      HOL/BNF/Tools/bnf_util.ML
       
     2     Author:     Dmitriy Traytel, TU Muenchen
       
     3     Copyright   2012
       
     4 
       
     5 Library for bounded natural functors.
       
     6 *)
       
     7 
       
     8 signature BNF_UTIL =
       
     9 sig
       
    10   val map3: ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
       
    11   val map4: ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
       
    12   val map5: ('a -> 'b -> 'c -> 'd -> 'e -> 'f) ->
       
    13     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list
       
    14   val map6: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g) ->
       
    15     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list
       
    16   val map7: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h) ->
       
    17     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list
       
    18   val map8: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i) ->
       
    19     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list -> 'i list
       
    20   val map9: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j) ->
       
    21     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
       
    22     'i list -> 'j list
       
    23   val map10: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j -> 'k) ->
       
    24     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
       
    25     'i list -> 'j list -> 'k list
       
    26   val map11: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j -> 'k -> 'l) ->
       
    27     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
       
    28     'i list -> 'j list -> 'k list -> 'l list
       
    29   val map12: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i -> 'j -> 'k -> 'l -> 'm) ->
       
    30     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h list ->
       
    31     'i list -> 'j list -> 'k list -> 'l list -> 'm list
       
    32   val fold_map2: ('a -> 'b -> 'c -> 'd * 'c) -> 'a list -> 'b list -> 'c -> 'd list * 'c
       
    33   val fold_map3: ('a -> 'b -> 'c -> 'd -> 'e * 'd) ->
       
    34     'a list -> 'b list -> 'c list -> 'd -> 'e list * 'd
       
    35   val fold_map4: ('a -> 'b -> 'c -> 'd -> 'e -> 'f * 'e) ->
       
    36     'a list -> 'b list -> 'c list -> 'd list -> 'e -> 'f list * 'e
       
    37   val fold_map5: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g * 'f) ->
       
    38     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f -> 'g list * 'f
       
    39   val fold_map6: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h * 'g) ->
       
    40     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g -> 'h list * 'g
       
    41   val fold_map7: ('a -> 'b -> 'c -> 'd -> 'e -> 'f -> 'g -> 'h -> 'i * 'h) ->
       
    42     'a list -> 'b list -> 'c list -> 'd list -> 'e list -> 'f list -> 'g list -> 'h -> 'i list * 'h
       
    43   val interleave: 'a list -> 'a list -> 'a list
       
    44   val transpose: 'a list list -> 'a list list
       
    45   val seq_conds: (bool -> 'a -> 'b) -> int -> int -> 'a list -> 'b list
       
    46 
       
    47   val mk_fresh_names: Proof.context -> int -> string -> string list * Proof.context
       
    48   val mk_TFrees: int -> Proof.context -> typ list * Proof.context
       
    49   val mk_TFreess: int list -> Proof.context -> typ list list * Proof.context
       
    50   val mk_TFrees': sort list -> Proof.context -> typ list * Proof.context
       
    51   val mk_Frees: string -> typ list -> Proof.context -> term list * Proof.context
       
    52   val mk_Freess: string -> typ list list -> Proof.context -> term list list * Proof.context
       
    53   val mk_Freesss: string -> typ list list list -> Proof.context ->
       
    54     term list list list * Proof.context
       
    55   val mk_Freessss: string -> typ list list list list -> Proof.context ->
       
    56     term list list list list * Proof.context
       
    57   val mk_Frees': string -> typ list -> Proof.context ->
       
    58     (term list * (string * typ) list) * Proof.context
       
    59   val mk_Freess': string -> typ list list -> Proof.context ->
       
    60     (term list list * (string * typ) list list) * Proof.context
       
    61   val nonzero_string_of_int: int -> string
       
    62 
       
    63   val strip_typeN: int -> typ -> typ list * typ
       
    64 
       
    65   val mk_predT: typ list -> typ
       
    66   val mk_pred1T: typ -> typ
       
    67   val mk_pred2T: typ -> typ -> typ
       
    68   val mk_optionT: typ -> typ
       
    69   val mk_relT: typ * typ -> typ
       
    70   val dest_relT: typ -> typ * typ
       
    71   val mk_sumT: typ * typ -> typ
       
    72 
       
    73   val ctwo: term
       
    74   val fst_const: typ -> term
       
    75   val snd_const: typ -> term
       
    76   val Id_const: typ -> term
       
    77 
       
    78   val mk_Ball: term -> term -> term
       
    79   val mk_Bex: term -> term -> term
       
    80   val mk_Card_order: term -> term
       
    81   val mk_Field: term -> term
       
    82   val mk_Gr: term -> term -> term
       
    83   val mk_IfN: typ -> term list -> term list -> term
       
    84   val mk_Trueprop_eq: term * term -> term
       
    85   val mk_UNION: term -> term -> term
       
    86   val mk_Union: typ -> term
       
    87   val mk_card_binop: string -> (typ * typ -> typ) -> term -> term -> term
       
    88   val mk_card_of: term -> term
       
    89   val mk_card_order: term -> term
       
    90   val mk_ccexp: term -> term -> term
       
    91   val mk_cexp: term -> term -> term
       
    92   val mk_cinfinite: term -> term
       
    93   val mk_collect: term list -> typ -> term
       
    94   val mk_converse: term -> term
       
    95   val mk_cprod: term -> term -> term
       
    96   val mk_csum: term -> term -> term
       
    97   val mk_dir_image: term -> term -> term
       
    98   val mk_image: term -> term
       
    99   val mk_in: term list -> term list -> typ -> term
       
   100   val mk_ordLeq: term -> term -> term
       
   101   val mk_rel_comp: term * term -> term
       
   102   val mk_subset: term -> term -> term
       
   103   val mk_wpull: term -> term -> term -> term -> term -> (term * term) option -> term -> term -> term
       
   104 
       
   105   val list_all_free: term list -> term -> term
       
   106   val list_exists_free: term list -> term -> term
       
   107 
       
   108   (*parameterized terms*)
       
   109   val mk_nthN: int -> term -> int -> term
       
   110 
       
   111   (*parameterized thms*)
       
   112   val mk_Un_upper: int -> int -> thm
       
   113   val mk_conjIN: int -> thm
       
   114   val mk_conjunctN: int -> int -> thm
       
   115   val conj_dests: int -> thm -> thm list
       
   116   val mk_disjIN: int -> int -> thm
       
   117   val mk_nthI: int -> int -> thm
       
   118   val mk_nth_conv: int -> int -> thm
       
   119   val mk_ordLeq_csum: int -> int -> thm -> thm
       
   120   val mk_UnIN: int -> int -> thm
       
   121 
       
   122   val ctrans: thm
       
   123   val o_apply: thm
       
   124   val set_mp: thm
       
   125   val set_rev_mp: thm
       
   126   val subset_UNIV: thm
       
   127   val Pair_eqD: thm
       
   128   val Pair_eqI: thm
       
   129   val mk_sym: thm -> thm
       
   130   val mk_trans: thm -> thm -> thm
       
   131   val mk_unabs_def: int -> thm -> thm
       
   132 
       
   133   val is_refl: thm -> bool
       
   134   val no_refl: thm list -> thm list
       
   135   val no_reflexive: thm list -> thm list
       
   136 
       
   137   val fold_thms: Proof.context -> thm list -> thm -> thm
       
   138   val unfold_thms: Proof.context -> thm list -> thm -> thm
       
   139 
       
   140   val mk_permute: ''a list -> ''a list -> 'b list -> 'b list
       
   141   val find_indices: ''a list -> ''a list -> int list
       
   142 
       
   143   val certifyT: Proof.context -> typ -> ctyp
       
   144   val certify: Proof.context -> term -> cterm
       
   145 
       
   146   val parse_binding_colon: Token.T list -> binding * Token.T list
       
   147   val parse_opt_binding_colon: Token.T list -> binding * Token.T list
       
   148 
       
   149   val typedef: bool -> binding option -> binding * (string * sort) list * mixfix -> term ->
       
   150     (binding * binding) option -> tactic -> local_theory -> (string * Typedef.info) * local_theory
       
   151 
       
   152   val WRAP: ('a -> tactic) -> ('a -> tactic) -> 'a list -> tactic -> tactic
       
   153   val WRAP': ('a -> int -> tactic) -> ('a -> int -> tactic) -> 'a list -> (int -> tactic) -> int ->
       
   154     tactic
       
   155   val CONJ_WRAP_GEN: tactic -> ('a -> tactic) -> 'a list -> tactic
       
   156   val CONJ_WRAP_GEN': (int -> tactic) -> ('a -> int -> tactic) -> 'a list -> int -> tactic
       
   157   val CONJ_WRAP: ('a -> tactic) -> 'a list -> tactic
       
   158   val CONJ_WRAP': ('a -> int -> tactic) -> 'a list -> int -> tactic
       
   159 end;
       
   160 
       
   161 structure BNF_Util : BNF_UTIL =
       
   162 struct
       
   163 
       
   164 (* Library proper *)
       
   165 
       
   166 fun map3 _ [] [] [] = []
       
   167   | map3 f (x1::x1s) (x2::x2s) (x3::x3s) = f x1 x2 x3 :: map3 f x1s x2s x3s
       
   168   | map3 _ _ _ _ = raise ListPair.UnequalLengths;
       
   169 
       
   170 fun map4 _ [] [] [] [] = []
       
   171   | map4 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) = f x1 x2 x3 x4 :: map4 f x1s x2s x3s x4s
       
   172   | map4 _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   173 
       
   174 fun map5 _ [] [] [] [] [] = []
       
   175   | map5 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) =
       
   176     f x1 x2 x3 x4 x5 :: map5 f x1s x2s x3s x4s x5s
       
   177   | map5 _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   178 
       
   179 fun map6 _ [] [] [] [] [] [] = []
       
   180   | map6 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) =
       
   181     f x1 x2 x3 x4 x5 x6 :: map6 f x1s x2s x3s x4s x5s x6s
       
   182   | map6 _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   183 
       
   184 fun map7 _ [] [] [] [] [] [] [] = []
       
   185   | map7 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) (x7::x7s) =
       
   186     f x1 x2 x3 x4 x5 x6 x7 :: map7 f x1s x2s x3s x4s x5s x6s x7s
       
   187   | map7 _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   188 
       
   189 fun map8 _ [] [] [] [] [] [] [] [] = []
       
   190   | map8 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) (x7::x7s) (x8::x8s) =
       
   191     f x1 x2 x3 x4 x5 x6 x7 x8 :: map8 f x1s x2s x3s x4s x5s x6s x7s x8s
       
   192   | map8 _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   193 
       
   194 fun map9 _ [] [] [] [] [] [] [] [] [] = []
       
   195   | map9 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
       
   196       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) =
       
   197     f x1 x2 x3 x4 x5 x6 x7 x8 x9 :: map9 f x1s x2s x3s x4s x5s x6s x7s x8s x9s
       
   198   | map9 _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   199 
       
   200 fun map10 _ [] [] [] [] [] [] [] [] [] [] = []
       
   201   | map10 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
       
   202       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) (x10::x10s) =
       
   203     f x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 :: map10 f x1s x2s x3s x4s x5s x6s x7s x8s x9s x10s
       
   204   | map10 _ _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   205 
       
   206 fun map11 _ [] [] [] [] [] [] [] [] [] [] [] = []
       
   207   | map11 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
       
   208       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) (x10::x10s) (x11::x11s) =
       
   209     f x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 :: map11 f x1s x2s x3s x4s x5s x6s x7s x8s x9s x10s x11s
       
   210   | map11 _ _ _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   211 
       
   212 fun map12 _ [] [] [] [] [] [] [] [] [] [] [] [] = []
       
   213   | map12 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s)
       
   214       (x6::x6s) (x7::x7s) (x8::x8s) (x9::x9s) (x10::x10s) (x11::x11s) (x12::x12s) =
       
   215     f x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ::
       
   216       map12 f x1s x2s x3s x4s x5s x6s x7s x8s x9s x10s x11s x12s
       
   217   | map12 _ _ _ _ _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   218 
       
   219 fun fold_map2 _ [] [] acc = ([], acc)
       
   220   | fold_map2 f (x1::x1s) (x2::x2s) acc =
       
   221     let
       
   222       val (x, acc') = f x1 x2 acc;
       
   223       val (xs, acc'') = fold_map2 f x1s x2s acc';
       
   224     in (x :: xs, acc'') end
       
   225   | fold_map2 _ _ _ _ = raise ListPair.UnequalLengths;
       
   226 
       
   227 fun fold_map3 _ [] [] [] acc = ([], acc)
       
   228   | fold_map3 f (x1::x1s) (x2::x2s) (x3::x3s) acc =
       
   229     let
       
   230       val (x, acc') = f x1 x2 x3 acc;
       
   231       val (xs, acc'') = fold_map3 f x1s x2s x3s acc';
       
   232     in (x :: xs, acc'') end
       
   233   | fold_map3 _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   234 
       
   235 fun fold_map4 _ [] [] [] [] acc = ([], acc)
       
   236   | fold_map4 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) acc =
       
   237     let
       
   238       val (x, acc') = f x1 x2 x3 x4 acc;
       
   239       val (xs, acc'') = fold_map4 f x1s x2s x3s x4s acc';
       
   240     in (x :: xs, acc'') end
       
   241   | fold_map4 _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   242 
       
   243 fun fold_map5 _ [] [] [] [] [] acc = ([], acc)
       
   244   | fold_map5 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) acc =
       
   245     let
       
   246       val (x, acc') = f x1 x2 x3 x4 x5 acc;
       
   247       val (xs, acc'') = fold_map5 f x1s x2s x3s x4s x5s acc';
       
   248     in (x :: xs, acc'') end
       
   249   | fold_map5 _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   250 
       
   251 fun fold_map6 _ [] [] [] [] [] [] acc = ([], acc)
       
   252   | fold_map6 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) acc =
       
   253     let
       
   254       val (x, acc') = f x1 x2 x3 x4 x5 x6 acc;
       
   255       val (xs, acc'') = fold_map6 f x1s x2s x3s x4s x5s x6s acc';
       
   256     in (x :: xs, acc'') end
       
   257   | fold_map6 _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   258 
       
   259 fun fold_map7 _ [] [] [] [] [] [] [] acc = ([], acc)
       
   260   | fold_map7 f (x1::x1s) (x2::x2s) (x3::x3s) (x4::x4s) (x5::x5s) (x6::x6s) (x7::x7s) acc =
       
   261     let
       
   262       val (x, acc') = f x1 x2 x3 x4 x5 x6 x7 acc;
       
   263       val (xs, acc'') = fold_map7 f x1s x2s x3s x4s x5s x6s x7s acc';
       
   264     in (x :: xs, acc'') end
       
   265   | fold_map7 _ _ _ _ _ _ _ _ _ = raise ListPair.UnequalLengths;
       
   266 
       
   267 (*stolen from ~~/src/HOL/Tools/SMT/smt_utils.ML*)
       
   268 fun certify ctxt = Thm.cterm_of (Proof_Context.theory_of ctxt);
       
   269 fun certifyT ctxt = Thm.ctyp_of (Proof_Context.theory_of ctxt);
       
   270 
       
   271 val parse_binding_colon = Parse.binding --| @{keyword ":"};
       
   272 val parse_opt_binding_colon = Scan.optional parse_binding_colon Binding.empty;
       
   273 
       
   274 (*TODO: is this really different from Typedef.add_typedef_global?*)
       
   275 fun typedef def opt_name typ set opt_morphs tac lthy =
       
   276   let
       
   277     val ((name, info), (lthy, lthy_old)) =
       
   278       lthy
       
   279       |> Typedef.add_typedef def opt_name typ set opt_morphs tac
       
   280       ||> `Local_Theory.restore;
       
   281     val phi = Proof_Context.export_morphism lthy_old lthy;
       
   282   in
       
   283     ((name, Typedef.transform_info phi info), lthy)
       
   284   end;
       
   285 
       
   286 (*Tactical WRAP surrounds a static given tactic (core) with two deterministic chains of tactics*)
       
   287 fun WRAP gen_before gen_after xs core_tac =
       
   288   fold_rev (fn x => fn tac => gen_before x THEN tac THEN gen_after x) xs core_tac;
       
   289 
       
   290 fun WRAP' gen_before gen_after xs core_tac =
       
   291   fold_rev (fn x => fn tac => gen_before x THEN' tac THEN' gen_after x) xs core_tac;
       
   292 
       
   293 fun CONJ_WRAP_GEN conj_tac gen_tac xs =
       
   294   let val (butlast, last) = split_last xs;
       
   295   in WRAP (fn thm => conj_tac THEN gen_tac thm) (K all_tac) butlast (gen_tac last) end;
       
   296 
       
   297 fun CONJ_WRAP_GEN' conj_tac gen_tac xs =
       
   298   let val (butlast, last) = split_last xs;
       
   299   in WRAP' (fn thm => conj_tac THEN' gen_tac thm) (K (K all_tac)) butlast (gen_tac last) end;
       
   300 
       
   301 (*not eta-converted because of monotype restriction*)
       
   302 fun CONJ_WRAP gen_tac = CONJ_WRAP_GEN (rtac conjI 1) gen_tac;
       
   303 fun CONJ_WRAP' gen_tac = CONJ_WRAP_GEN' (rtac conjI) gen_tac;
       
   304 
       
   305 
       
   306 
       
   307 (* Term construction *)
       
   308 
       
   309 (** Fresh variables **)
       
   310 
       
   311 fun nonzero_string_of_int 0 = ""
       
   312   | nonzero_string_of_int n = string_of_int n;
       
   313 
       
   314 val mk_TFrees' = apfst (map TFree) oo Variable.invent_types;
       
   315 
       
   316 fun mk_TFrees n = mk_TFrees' (replicate n HOLogic.typeS);
       
   317 val mk_TFreess = fold_map mk_TFrees;
       
   318 
       
   319 fun mk_names n x = if n = 1 then [x] else map (fn i => x ^ string_of_int i) (1 upto n);
       
   320 
       
   321 fun mk_fresh_names ctxt = (fn xs => Variable.variant_fixes xs ctxt) oo mk_names;
       
   322 fun mk_Frees x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => map2 (curry Free) xs Ts);
       
   323 fun mk_Freess x Tss = fold_map2 mk_Frees (mk_names (length Tss) x) Tss;
       
   324 fun mk_Freesss x Tsss = fold_map2 mk_Freess (mk_names (length Tsss) x) Tsss;
       
   325 fun mk_Freessss x Tssss = fold_map2 mk_Freesss (mk_names (length Tssss) x) Tssss;
       
   326 fun mk_Frees' x Ts ctxt = mk_fresh_names ctxt (length Ts) x |>> (fn xs => `(map Free) (xs ~~ Ts));
       
   327 fun mk_Freess' x Tss = fold_map2 mk_Frees' (mk_names (length Tss) x) Tss #>> split_list;
       
   328 
       
   329 
       
   330 (** Types **)
       
   331 
       
   332 fun strip_typeN 0 T = ([], T)
       
   333   | strip_typeN n (Type (@{type_name fun}, [T, T'])) = strip_typeN (n - 1) T' |>> cons T
       
   334   | strip_typeN _ T = raise TYPE ("strip_typeN", [T], []);
       
   335 
       
   336 fun mk_predT Ts = Ts ---> HOLogic.boolT;
       
   337 fun mk_pred1T T = mk_predT [T];
       
   338 fun mk_pred2T T U = mk_predT [T, U];
       
   339 fun mk_optionT T = Type (@{type_name option}, [T]);
       
   340 val mk_relT = HOLogic.mk_setT o HOLogic.mk_prodT;
       
   341 val dest_relT = HOLogic.dest_prodT o HOLogic.dest_setT;
       
   342 fun mk_sumT (LT, RT) = Type (@{type_name Sum_Type.sum}, [LT, RT]);
       
   343 fun mk_partial_funT (ranT, domT) = domT --> mk_optionT ranT;
       
   344 
       
   345 
       
   346 (** Constants **)
       
   347 
       
   348 fun fst_const T = Const (@{const_name fst}, T --> fst (HOLogic.dest_prodT T));
       
   349 fun snd_const T = Const (@{const_name snd}, T --> snd (HOLogic.dest_prodT T));
       
   350 fun Id_const T = Const (@{const_name Id}, mk_relT (T, T));
       
   351 
       
   352 
       
   353 (** Operators **)
       
   354 
       
   355 val mk_Trueprop_eq = HOLogic.mk_Trueprop o HOLogic.mk_eq;
       
   356 
       
   357 fun mk_IfN _ _ [t] = t
       
   358   | mk_IfN T (c :: cs) (t :: ts) =
       
   359     Const (@{const_name If}, HOLogic.boolT --> T --> T --> T) $ c $ t $ mk_IfN T cs ts;
       
   360 
       
   361 fun mk_converse R =
       
   362   let
       
   363     val RT = dest_relT (fastype_of R);
       
   364     val RST = mk_relT (snd RT, fst RT);
       
   365   in Const (@{const_name converse}, fastype_of R --> RST) $ R end;
       
   366 
       
   367 fun mk_rel_comp (R, S) =
       
   368   let
       
   369     val RT = fastype_of R;
       
   370     val ST = fastype_of S;
       
   371     val RST = mk_relT (fst (dest_relT RT), snd (dest_relT ST));
       
   372   in Const (@{const_name relcomp}, RT --> ST --> RST) $ R $ S end;
       
   373 
       
   374 fun mk_Gr A f =
       
   375   let val ((AT, BT), FT) = `dest_funT (fastype_of f);
       
   376   in Const (@{const_name Gr}, HOLogic.mk_setT AT --> FT --> mk_relT (AT, BT)) $ A $ f end;
       
   377 
       
   378 fun mk_image f =
       
   379   let val (T, U) = dest_funT (fastype_of f);
       
   380   in Const (@{const_name image},
       
   381     (T --> U) --> (HOLogic.mk_setT T) --> (HOLogic.mk_setT U)) $ f end;
       
   382 
       
   383 fun mk_Ball X f =
       
   384   Const (@{const_name Ball}, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f;
       
   385 
       
   386 fun mk_Bex X f =
       
   387   Const (@{const_name Bex}, fastype_of X --> fastype_of f --> HOLogic.boolT) $ X $ f;
       
   388 
       
   389 fun mk_UNION X f =
       
   390   let val (T, U) = dest_funT (fastype_of f);
       
   391   in Const (@{const_name SUPR}, fastype_of X --> (T --> U) --> U) $ X $ f end;
       
   392 
       
   393 fun mk_Union T =
       
   394   Const (@{const_name Sup}, HOLogic.mk_setT (HOLogic.mk_setT T) --> HOLogic.mk_setT T);
       
   395 
       
   396 fun mk_Field r =
       
   397   let val T = fst (dest_relT (fastype_of r));
       
   398   in Const (@{const_name Field}, mk_relT (T, T) --> HOLogic.mk_setT T) $ r end;
       
   399 
       
   400 fun mk_card_order bd =
       
   401   let
       
   402     val T = fastype_of bd;
       
   403     val AT = fst (dest_relT T);
       
   404   in
       
   405     Const (@{const_name card_order_on}, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $
       
   406       (HOLogic.mk_UNIV AT) $ bd
       
   407   end;
       
   408 
       
   409 fun mk_Card_order bd =
       
   410   let
       
   411     val T = fastype_of bd;
       
   412     val AT = fst (dest_relT T);
       
   413   in
       
   414     Const (@{const_name card_order_on}, HOLogic.mk_setT AT --> T --> HOLogic.boolT) $
       
   415       mk_Field bd $ bd
       
   416   end;
       
   417 
       
   418 fun mk_cinfinite bd =
       
   419   Const (@{const_name cinfinite}, fastype_of bd --> HOLogic.boolT) $ bd;
       
   420 
       
   421 fun mk_ordLeq t1 t2 =
       
   422   HOLogic.mk_mem (HOLogic.mk_prod (t1, t2),
       
   423     Const (@{const_name ordLeq}, mk_relT (fastype_of t1, fastype_of t2)));
       
   424 
       
   425 fun mk_card_of A =
       
   426   let
       
   427     val AT = fastype_of A;
       
   428     val T = HOLogic.dest_setT AT;
       
   429   in
       
   430     Const (@{const_name card_of}, AT --> mk_relT (T, T)) $ A
       
   431   end;
       
   432 
       
   433 fun mk_dir_image r f =
       
   434   let val (T, U) = dest_funT (fastype_of f);
       
   435   in Const (@{const_name dir_image}, mk_relT (T, T) --> (T --> U) --> mk_relT (U, U)) $ r $ f end;
       
   436 
       
   437 (*FIXME: "x"?*)
       
   438 (*(nth sets i) must be of type "T --> 'ai set"*)
       
   439 fun mk_in As sets T =
       
   440   let
       
   441     fun in_single set A =
       
   442       let val AT = fastype_of A;
       
   443       in Const (@{const_name less_eq},
       
   444         AT --> AT --> HOLogic.boolT) $ (set $ Free ("x", T)) $ A end;
       
   445   in
       
   446     if length sets > 0
       
   447     then HOLogic.mk_Collect ("x", T, foldr1 (HOLogic.mk_conj) (map2 in_single sets As))
       
   448     else HOLogic.mk_UNIV T
       
   449   end;
       
   450 
       
   451 fun mk_wpull A B1 B2 f1 f2 pseudo p1 p2 =
       
   452   let
       
   453     val AT = fastype_of A;
       
   454     val BT1 = fastype_of B1;
       
   455     val BT2 = fastype_of B2;
       
   456     val FT1 = fastype_of f1;
       
   457     val FT2 = fastype_of f2;
       
   458     val PT1 = fastype_of p1;
       
   459     val PT2 = fastype_of p2;
       
   460     val T1 = HOLogic.dest_setT BT1;
       
   461     val T2 = HOLogic.dest_setT BT2;
       
   462     val domP = domain_type PT1;
       
   463     val ranF = range_type FT1;
       
   464     val _ = if is_some pseudo orelse
       
   465                (HOLogic.dest_setT AT = domP andalso
       
   466                domain_type FT1 = T1 andalso
       
   467                domain_type FT2 = T2 andalso
       
   468                domain_type PT2 = domP andalso
       
   469                range_type PT1 = T1 andalso
       
   470                range_type PT2 = T2 andalso
       
   471                range_type FT2 = ranF)
       
   472       then () else raise TYPE ("mk_wpull", [BT1, BT2, FT1, FT2, PT1, PT2], []);
       
   473   in
       
   474     (case pseudo of
       
   475       NONE => Const (@{const_name wpull},
       
   476         AT --> BT1 --> BT2 --> FT1 --> FT2 --> PT1 --> PT2 --> HOLogic.boolT) $
       
   477         A $ B1 $ B2 $ f1 $ f2 $ p1 $ p2
       
   478     | SOME (e1, e2) => Const (@{const_name wppull},
       
   479         AT --> BT1 --> BT2 --> FT1 --> FT2 --> fastype_of e1 --> fastype_of e2 -->
       
   480           PT1 --> PT2 --> HOLogic.boolT) $
       
   481         A $ B1 $ B2 $ f1 $ f2 $ e1 $ e2 $ p1 $ p2)
       
   482   end;
       
   483 
       
   484 fun mk_subset t1 t2 =
       
   485   Const (@{const_name less_eq}, (fastype_of t1) --> (fastype_of t2) --> HOLogic.boolT) $ t1 $ t2;
       
   486 
       
   487 fun mk_card_binop binop typop t1 t2 =
       
   488   let
       
   489     val (T1, relT1) = `(fst o dest_relT) (fastype_of t1);
       
   490     val (T2, relT2) = `(fst o dest_relT) (fastype_of t2);
       
   491   in
       
   492     Const (binop, relT1 --> relT2 --> mk_relT (typop (T1, T2), typop (T1, T2))) $ t1 $ t2
       
   493   end;
       
   494 
       
   495 val mk_csum = mk_card_binop @{const_name csum} mk_sumT;
       
   496 val mk_cprod = mk_card_binop @{const_name cprod} HOLogic.mk_prodT;
       
   497 val mk_cexp = mk_card_binop @{const_name cexp} mk_partial_funT;
       
   498 val mk_ccexp = mk_card_binop @{const_name ccexp} mk_partial_funT;
       
   499 val ctwo = @{term ctwo};
       
   500 
       
   501 fun mk_collect xs defT =
       
   502   let val T = (case xs of [] => defT | (x::_) => fastype_of x);
       
   503   in Const (@{const_name collect}, HOLogic.mk_setT T --> T) $ (HOLogic.mk_set T xs) end;
       
   504 
       
   505 fun mk_permute src dest xs = map (nth xs o (fn x => find_index ((curry op =) x) src)) dest;
       
   506 
       
   507 val list_all_free =
       
   508   fold_rev (fn free => fn P =>
       
   509     let val (x, T) = Term.dest_Free free;
       
   510     in HOLogic.all_const T $ Term.absfree (x, T) P end);
       
   511 
       
   512 val list_exists_free =
       
   513   fold_rev (fn free => fn P =>
       
   514     let val (x, T) = Term.dest_Free free;
       
   515     in HOLogic.exists_const T $ Term.absfree (x, T) P end);
       
   516 
       
   517 fun find_indices xs ys = map_filter I
       
   518   (map_index (fn (i, y) => if member (op =) xs y then SOME i else NONE) ys);
       
   519 
       
   520 fun mk_trans thm1 thm2 = trans OF [thm1, thm2];
       
   521 fun mk_sym thm = sym OF [thm];
       
   522 
       
   523 (*TODO: antiquote heavily used theorems once*)
       
   524 val ctrans = @{thm ordLeq_transitive};
       
   525 val o_apply = @{thm o_apply};
       
   526 val set_mp = @{thm set_mp};
       
   527 val set_rev_mp = @{thm set_rev_mp};
       
   528 val subset_UNIV = @{thm subset_UNIV};
       
   529 val Pair_eqD = @{thm iffD1[OF Pair_eq]};
       
   530 val Pair_eqI = @{thm iffD2[OF Pair_eq]};
       
   531 
       
   532 fun mk_nthN 1 t 1 = t
       
   533   | mk_nthN _ t 1 = HOLogic.mk_fst t
       
   534   | mk_nthN 2 t 2 = HOLogic.mk_snd t
       
   535   | mk_nthN n t m = mk_nthN (n - 1) (HOLogic.mk_snd t) (m - 1);
       
   536 
       
   537 fun mk_nth_conv n m =
       
   538   let
       
   539     fun thm b = if b then @{thm fst_snd} else @{thm snd_snd}
       
   540     fun mk_nth_conv _ 1 1 = refl
       
   541       | mk_nth_conv _ _ 1 = @{thm fst_conv}
       
   542       | mk_nth_conv _ 2 2 = @{thm snd_conv}
       
   543       | mk_nth_conv b _ 2 = @{thm snd_conv} RS thm b
       
   544       | mk_nth_conv b n m = mk_nth_conv false (n - 1) (m - 1) RS thm b;
       
   545   in mk_nth_conv (not (m = n)) n m end;
       
   546 
       
   547 fun mk_nthI 1 1 = @{thm TrueE[OF TrueI]}
       
   548   | mk_nthI n m = fold (curry op RS) (replicate (m - 1) @{thm sndI})
       
   549     (if m = n then @{thm TrueE[OF TrueI]} else @{thm fstI});
       
   550 
       
   551 fun mk_conjunctN 1 1 = @{thm TrueE[OF TrueI]}
       
   552   | mk_conjunctN _ 1 = conjunct1
       
   553   | mk_conjunctN 2 2 = conjunct2
       
   554   | mk_conjunctN n m = conjunct2 RS (mk_conjunctN (n - 1) (m - 1));
       
   555 
       
   556 fun conj_dests n thm = map (fn k => thm RS mk_conjunctN n k) (1 upto n);
       
   557 
       
   558 fun mk_conjIN 1 = @{thm TrueE[OF TrueI]}
       
   559   | mk_conjIN n = mk_conjIN (n - 1) RSN (2, conjI);
       
   560 
       
   561 fun mk_disjIN 1 1 = @{thm TrueE[OF TrueI]}
       
   562   | mk_disjIN _ 1 = disjI1
       
   563   | mk_disjIN 2 2 = disjI2
       
   564   | mk_disjIN n m = (mk_disjIN (n - 1) (m - 1)) RS disjI2;
       
   565 
       
   566 fun mk_ordLeq_csum 1 1 thm = thm
       
   567   | mk_ordLeq_csum _ 1 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum1}]
       
   568   | mk_ordLeq_csum 2 2 thm = @{thm ordLeq_transitive} OF [thm, @{thm ordLeq_csum2}]
       
   569   | mk_ordLeq_csum n m thm = @{thm ordLeq_transitive} OF
       
   570     [mk_ordLeq_csum (n - 1) (m - 1) thm, @{thm ordLeq_csum2[OF Card_order_csum]}];
       
   571 
       
   572 local
       
   573   fun mk_Un_upper' 0 = subset_refl
       
   574     | mk_Un_upper' 1 = @{thm Un_upper1}
       
   575     | mk_Un_upper' k = Library.foldr (op RS o swap)
       
   576       (replicate (k - 1) @{thm subset_trans[OF Un_upper1]}, @{thm Un_upper1});
       
   577 in
       
   578   fun mk_Un_upper 1 1 = subset_refl
       
   579     | mk_Un_upper n 1 = mk_Un_upper' (n - 2) RS @{thm subset_trans[OF Un_upper1]}
       
   580     | mk_Un_upper n m = mk_Un_upper' (n - m) RS @{thm subset_trans[OF Un_upper2]};
       
   581 end;
       
   582 
       
   583 local
       
   584   fun mk_UnIN' 0 = @{thm UnI2}
       
   585     | mk_UnIN' m = mk_UnIN' (m - 1) RS @{thm UnI1};
       
   586 in
       
   587   fun mk_UnIN 1 1 = @{thm TrueE[OF TrueI]}
       
   588     | mk_UnIN n 1 = Library.foldr1 (op RS o swap) (replicate (n - 1) @{thm UnI1})
       
   589     | mk_UnIN n m = mk_UnIN' (n - m)
       
   590 end;
       
   591 
       
   592 fun interleave xs ys = flat (map2 (fn x => fn y => [x, y]) xs ys);
       
   593 
       
   594 fun transpose [] = []
       
   595   | transpose ([] :: xss) = transpose xss
       
   596   | transpose xss = map hd xss :: transpose (map tl xss);
       
   597 
       
   598 fun seq_conds f n k xs =
       
   599   if k = n then
       
   600     map (f false) (take (k - 1) xs)
       
   601   else
       
   602     let val (negs, pos) = split_last (take k xs) in
       
   603       map (f false) negs @ [f true pos]
       
   604     end;
       
   605 
       
   606 fun mk_unabs_def 0 thm = thm
       
   607   | mk_unabs_def n thm = mk_unabs_def (n - 1) thm RS @{thm spec[OF iffD1[OF fun_eq_iff]]};
       
   608 
       
   609 fun is_refl thm =
       
   610   op aconv (HOLogic.dest_eq (HOLogic.dest_Trueprop (Thm.prop_of thm)))
       
   611   handle TERM _ => false;
       
   612 
       
   613 val no_refl = filter_out is_refl;
       
   614 val no_reflexive = filter_out Thm.is_reflexive;
       
   615 
       
   616 fun fold_thms ctxt thms = Local_Defs.fold ctxt (distinct Thm.eq_thm_prop thms);
       
   617 fun unfold_thms ctxt thms = Local_Defs.unfold ctxt (distinct Thm.eq_thm_prop thms);
       
   618 
       
   619 end;