14 | And boolex boolex; |
14 | And boolex boolex; |
15 |
15 |
16 text{*\noindent |
16 text{*\noindent |
17 The two constants are represented by @{term"Const True"} and |
17 The two constants are represented by @{term"Const True"} and |
18 @{term"Const False"}. Variables are represented by terms of the form |
18 @{term"Const False"}. Variables are represented by terms of the form |
19 @{term"Var n"}, where @{term"n"} is a natural number (type \isa{nat}). |
19 @{term"Var n"}, where @{term"n"} is a natural number (type @{typ"nat"}). |
20 For example, the formula $P@0 \land \neg P@1$ is represented by the term |
20 For example, the formula $P@0 \land \neg P@1$ is represented by the term |
21 @{term"And (Var 0) (Neg(Var 1))"}. |
21 @{term"And (Var 0) (Neg(Var 1))"}. |
22 |
22 |
23 \subsubsection{What is the value of a boolean expression?} |
23 \subsubsection{What is the value of a boolean expression?} |
24 |
24 |
25 The value of a boolean expression depends on the value of its variables. |
25 The value of a boolean expression depends on the value of its variables. |
26 Hence the function \isa{value} takes an additional parameter, an {\em |
26 Hence the function @{text"value"} takes an additional parameter, an |
27 environment} of type @{typ"nat => bool"}, which maps variables to |
27 \emph{environment} of type @{typ"nat => bool"}, which maps variables to their |
28 their values: |
28 values: |
29 *} |
29 *} |
30 |
30 |
31 consts value :: "boolex \\<Rightarrow> (nat \\<Rightarrow> bool) \\<Rightarrow> bool"; |
31 consts value :: "boolex \\<Rightarrow> (nat \\<Rightarrow> bool) \\<Rightarrow> bool"; |
32 primrec |
32 primrec |
33 "value (Const b) env = b" |
33 "value (Const b) env = b" |
38 text{*\noindent |
38 text{*\noindent |
39 \subsubsection{If-expressions} |
39 \subsubsection{If-expressions} |
40 |
40 |
41 An alternative and often more efficient (because in a certain sense |
41 An alternative and often more efficient (because in a certain sense |
42 canonical) representation are so-called \emph{If-expressions} built up |
42 canonical) representation are so-called \emph{If-expressions} built up |
43 from constants (\isa{CIF}), variables (\isa{VIF}) and conditionals |
43 from constants (@{term"CIF"}), variables (@{term"VIF"}) and conditionals |
44 (\isa{IF}): |
44 (@{term"IF"}): |
45 *} |
45 *} |
46 |
46 |
47 datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex; |
47 datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex; |
48 |
48 |
49 text{*\noindent |
49 text{*\noindent |
50 The evaluation if If-expressions proceeds as for \isa{boolex}: |
50 The evaluation if If-expressions proceeds as for @{typ"boolex"}: |
51 *} |
51 *} |
52 |
52 |
53 consts valif :: "ifex \\<Rightarrow> (nat \\<Rightarrow> bool) \\<Rightarrow> bool"; |
53 consts valif :: "ifex \\<Rightarrow> (nat \\<Rightarrow> bool) \\<Rightarrow> bool"; |
54 primrec |
54 primrec |
55 "valif (CIF b) env = b" |
55 "valif (CIF b) env = b" |
58 else valif e env)"; |
58 else valif e env)"; |
59 |
59 |
60 text{* |
60 text{* |
61 \subsubsection{Transformation into and of If-expressions} |
61 \subsubsection{Transformation into and of If-expressions} |
62 |
62 |
63 The type \isa{boolex} is close to the customary representation of logical |
63 The type @{typ"boolex"} is close to the customary representation of logical |
64 formulae, whereas \isa{ifex} is designed for efficiency. It is easy to |
64 formulae, whereas @{typ"ifex"} is designed for efficiency. It is easy to |
65 translate from \isa{boolex} into \isa{ifex}: |
65 translate from @{typ"boolex"} into @{typ"ifex"}: |
66 *} |
66 *} |
67 |
67 |
68 consts bool2if :: "boolex \\<Rightarrow> ifex"; |
68 consts bool2if :: "boolex \\<Rightarrow> ifex"; |
69 primrec |
69 primrec |
70 "bool2if (Const b) = CIF b" |
70 "bool2if (Const b) = CIF b" |
71 "bool2if (Var x) = VIF x" |
71 "bool2if (Var x) = VIF x" |
72 "bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" |
72 "bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" |
73 "bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"; |
73 "bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)"; |
74 |
74 |
75 text{*\noindent |
75 text{*\noindent |
76 At last, we have something we can verify: that \isa{bool2if} preserves the |
76 At last, we have something we can verify: that @{term"bool2if"} preserves the |
77 value of its argument: |
77 value of its argument: |
78 *} |
78 *} |
79 |
79 |
80 lemma "valif (bool2if b) env = value b env"; |
80 lemma "valif (bool2if b) env = value b env"; |
81 |
81 |
89 text{*\noindent |
89 text{*\noindent |
90 In fact, all proofs in this case study look exactly like this. Hence we do |
90 In fact, all proofs in this case study look exactly like this. Hence we do |
91 not show them below. |
91 not show them below. |
92 |
92 |
93 More interesting is the transformation of If-expressions into a normal form |
93 More interesting is the transformation of If-expressions into a normal form |
94 where the first argument of \isa{IF} cannot be another \isa{IF} but |
94 where the first argument of @{term"IF"} cannot be another @{term"IF"} but |
95 must be a constant or variable. Such a normal form can be computed by |
95 must be a constant or variable. Such a normal form can be computed by |
96 repeatedly replacing a subterm of the form @{term"IF (IF b x y) z u"} by |
96 repeatedly replacing a subterm of the form @{term"IF (IF b x y) z u"} by |
97 @{term"IF b (IF x z u) (IF y z u)"}, which has the same value. The following |
97 @{term"IF b (IF x z u) (IF y z u)"}, which has the same value. The following |
98 primitive recursive functions perform this task: |
98 primitive recursive functions perform this task: |
99 *} |
99 *} |
118 |
118 |
119 theorem "valif (norm b) env = valif b env";(*<*)oops;(*>*) |
119 theorem "valif (norm b) env = valif b env";(*<*)oops;(*>*) |
120 |
120 |
121 text{*\noindent |
121 text{*\noindent |
122 The proof is canonical, provided we first show the following simplification |
122 The proof is canonical, provided we first show the following simplification |
123 lemma (which also helps to understand what \isa{normif} does): |
123 lemma (which also helps to understand what @{term"normif"} does): |
124 *} |
124 *} |
125 |
125 |
126 lemma [simp]: |
126 lemma [simp]: |
127 "\\<forall>t e. valif (normif b t e) env = valif (IF b t e) env"; |
127 "\\<forall>t e. valif (normif b t e) env = valif (IF b t e) env"; |
128 (*<*) |
128 (*<*) |
133 apply(induct_tac b); |
133 apply(induct_tac b); |
134 by(auto); |
134 by(auto); |
135 (*>*) |
135 (*>*) |
136 text{*\noindent |
136 text{*\noindent |
137 Note that the lemma does not have a name, but is implicitly used in the proof |
137 Note that the lemma does not have a name, but is implicitly used in the proof |
138 of the theorem shown above because of the \isa{[simp]} attribute. |
138 of the theorem shown above because of the @{text"[simp]"} attribute. |
139 |
139 |
140 But how can we be sure that \isa{norm} really produces a normal form in |
140 But how can we be sure that @{term"norm"} really produces a normal form in |
141 the above sense? We define a function that tests If-expressions for normality |
141 the above sense? We define a function that tests If-expressions for normality |
142 *} |
142 *} |
143 |
143 |
144 consts normal :: "ifex \\<Rightarrow> bool"; |
144 consts normal :: "ifex \\<Rightarrow> bool"; |
145 primrec |
145 primrec |
147 "normal(VIF x) = True" |
147 "normal(VIF x) = True" |
148 "normal(IF b t e) = (normal t \\<and> normal e \\<and> |
148 "normal(IF b t e) = (normal t \\<and> normal e \\<and> |
149 (case b of CIF b \\<Rightarrow> True | VIF x \\<Rightarrow> True | IF x y z \\<Rightarrow> False))"; |
149 (case b of CIF b \\<Rightarrow> True | VIF x \\<Rightarrow> True | IF x y z \\<Rightarrow> False))"; |
150 |
150 |
151 text{*\noindent |
151 text{*\noindent |
152 and prove \isa{normal(norm b)}. Of course, this requires a lemma about |
152 and prove @{term"normal(norm b)"}. Of course, this requires a lemma about |
153 normality of \isa{normif}: |
153 normality of @{term"normif"}: |
154 *} |
154 *} |
155 |
155 |
156 lemma[simp]: "\\<forall>t e. normal(normif b t e) = (normal t \\<and> normal e)"; |
156 lemma[simp]: "\\<forall>t e. normal(normif b t e) = (normal t \\<and> normal e)"; |
157 (*<*) |
157 (*<*) |
158 apply(induct_tac b); |
158 apply(induct_tac b); |