src/HOL/Induct/QuoDataType.thy
changeset 14527 bc9e5587d05a
child 14533 32806c0afebf
equal deleted inserted replaced
14526:51dc6c7b1fd7 14527:bc9e5587d05a
       
     1 (*  Title:      HOL/Induct/QuoDataType
       
     2     ID:         $Id$
       
     3     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     4     Copyright   2004  University of Cambridge
       
     5 
       
     6 *)
       
     7 
       
     8 header{*Defining an Initial Algebra by Quotienting a Free Algebra*}
       
     9 
       
    10 theory QuoDataType = Main:
       
    11 
       
    12 subsection{*Defining the Free Algebra*}
       
    13 
       
    14 text{*Messages with encryption and decryption as free constructors.*}
       
    15 datatype
       
    16      freemsg = NONCE  nat
       
    17 	     | MPAIR  freemsg freemsg
       
    18 	     | CRYPT  nat freemsg  
       
    19 	     | DECRYPT  nat freemsg
       
    20 
       
    21 text{*The equivalence relation, which makes encryption and decryption inverses
       
    22 provided the keys are the same.*}
       
    23 consts  msgrel :: "(freemsg * freemsg) set"
       
    24 
       
    25 syntax
       
    26   "_msgrel" :: "[freemsg, freemsg] => bool"  (infixl "~~" 50)
       
    27 syntax (xsymbols)
       
    28   "_msgrel" :: "[freemsg, freemsg] => bool"  (infixl "\<sim>" 50)
       
    29 translations
       
    30   "X \<sim> Y" == "(X,Y) \<in> msgrel"
       
    31 
       
    32 text{*The first two rules are the desired equations. The next four rules
       
    33 make the equations applicable to subterms. The last two rules are symmetry
       
    34 and transitivity.*}
       
    35 inductive "msgrel"
       
    36   intros 
       
    37     CD:    "CRYPT K (DECRYPT K X) \<sim> X"
       
    38     DC:    "DECRYPT K (CRYPT K X) \<sim> X"
       
    39     NONCE: "NONCE N \<sim> NONCE N"
       
    40     MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"
       
    41     CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"
       
    42     DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"
       
    43     SYM:   "X \<sim> Y \<Longrightarrow> Y \<sim> X"
       
    44     TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
       
    45 
       
    46 
       
    47 text{*Proving that it is an equivalence relation*}
       
    48 
       
    49 lemma msgrel_refl: "X \<sim> X"
       
    50 by (induct X, (blast intro: msgrel.intros)+)
       
    51 
       
    52 theorem equiv_msgrel: "equiv UNIV msgrel"
       
    53 proof (simp add: equiv_def, intro conjI)
       
    54   show "reflexive msgrel" by (simp add: refl_def msgrel_refl)
       
    55   show "sym msgrel" by (simp add: sym_def, blast intro: msgrel.SYM)
       
    56   show "trans msgrel" by (simp add: trans_def, blast intro: msgrel.TRANS)
       
    57 qed
       
    58 
       
    59 
       
    60 subsection{*Some Functions on the Free Algebra*}
       
    61 
       
    62 subsubsection{*The Set of Nonces*}
       
    63 
       
    64 text{*A function to return the set of nonces present in a message.  It will
       
    65 be lifted to the initial algrebra, to serve as an example of that process.*}
       
    66 consts
       
    67   freenonces :: "freemsg \<Rightarrow> nat set"
       
    68 
       
    69 primrec
       
    70    "freenonces (NONCE N) = {N}"
       
    71    "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"
       
    72    "freenonces (CRYPT K X) = freenonces X"
       
    73    "freenonces (DECRYPT K X) = freenonces X"
       
    74 
       
    75 text{*This theorem lets us prove that the nonces function respects the
       
    76 equivalence relation.  It also helps us prove that Nonce
       
    77   (the abstract constructor) is injective*}
       
    78 theorem msgrel_imp_eq_freenonces: "U \<sim> V \<Longrightarrow> freenonces U = freenonces V"
       
    79 by (erule msgrel.induct, auto) 
       
    80 
       
    81 
       
    82 subsubsection{*The Left Projection*}
       
    83 
       
    84 text{*A function to return the left part of the top pair in a message.  It will
       
    85 be lifted to the initial algrebra, to serve as an example of that process.*}
       
    86 consts free_left :: "freemsg \<Rightarrow> freemsg"
       
    87 primrec
       
    88    "free_left (NONCE N) = NONCE N"
       
    89    "free_left (MPAIR X Y) = X"
       
    90    "free_left (CRYPT K X) = free_left X"
       
    91    "free_left (DECRYPT K X) = free_left X"
       
    92 
       
    93 text{*This theorem lets us prove that the left function respects the
       
    94 equivalence relation.  It also helps us prove that MPair
       
    95   (the abstract constructor) is injective*}
       
    96 theorem msgrel_imp_eqv_free_left:
       
    97      "U \<sim> V \<Longrightarrow> free_left U \<sim> free_left V"
       
    98 by (erule msgrel.induct, auto intro: msgrel.intros)
       
    99 
       
   100 
       
   101 subsubsection{*The Right Projection*}
       
   102 
       
   103 text{*A function to return the right part of the top pair in a message.*}
       
   104 consts free_right :: "freemsg \<Rightarrow> freemsg"
       
   105 primrec
       
   106    "free_right (NONCE N) = NONCE N"
       
   107    "free_right (MPAIR X Y) = Y"
       
   108    "free_right (CRYPT K X) = free_right X"
       
   109    "free_right (DECRYPT K X) = free_right X"
       
   110 
       
   111 text{*This theorem lets us prove that the right function respects the
       
   112 equivalence relation.  It also helps us prove that MPair
       
   113   (the abstract constructor) is injective*}
       
   114 theorem msgrel_imp_eqv_free_right:
       
   115      "U \<sim> V \<Longrightarrow> free_right U \<sim> free_right V"
       
   116 by (erule msgrel.induct, auto intro: msgrel.intros)
       
   117 
       
   118 
       
   119 subsubsection{*The Discriminator for Nonces*}
       
   120 
       
   121 text{*A function to identify nonces*}
       
   122 consts isNONCE :: "freemsg \<Rightarrow> bool"
       
   123 primrec
       
   124    "isNONCE (NONCE N) = True"
       
   125    "isNONCE (MPAIR X Y) = False"
       
   126    "isNONCE (CRYPT K X) = isNONCE X"
       
   127    "isNONCE (DECRYPT K X) = isNONCE X"
       
   128 
       
   129 text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}
       
   130 theorem msgrel_imp_eq_isNONCE:
       
   131      "U \<sim> V \<Longrightarrow> isNONCE U = isNONCE V"
       
   132 by (erule msgrel.induct, auto)
       
   133 
       
   134 
       
   135 subsection{*The Initial Algebra: A Quotiented Message Type*}
       
   136 
       
   137 typedef (Msg)  msg = "UNIV//msgrel"
       
   138     by (auto simp add: quotient_def)
       
   139 
       
   140 
       
   141 text{*The abstract message constructors*}
       
   142 constdefs
       
   143   Nonce :: "nat \<Rightarrow> msg"
       
   144   "Nonce N == Abs_Msg(msgrel``{NONCE N})"
       
   145 
       
   146   MPair :: "[msg,msg] \<Rightarrow> msg"
       
   147    "MPair X Y ==
       
   148        Abs_Msg (\<Union>U \<in> Rep_Msg(X). \<Union>V \<in> Rep_Msg(Y). msgrel``{MPAIR U V})"
       
   149 
       
   150   Crypt :: "[nat,msg] \<Rightarrow> msg"
       
   151    "Crypt K X ==
       
   152        Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{CRYPT K U})"
       
   153 
       
   154   Decrypt :: "[nat,msg] \<Rightarrow> msg"
       
   155    "Decrypt K X ==
       
   156        Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{DECRYPT K U})"
       
   157 
       
   158 
       
   159 text{*Reduces equality of equivalence classes to the @{term msgrel} relation:
       
   160   @{term "(msgrel `` {x} = msgrel `` {y}) = ((x,y) \<in> msgrel)"} *}
       
   161 lemmas equiv_msgrel_iff = eq_equiv_class_iff [OF equiv_msgrel UNIV_I UNIV_I]
       
   162 
       
   163 declare equiv_msgrel_iff [simp]
       
   164 
       
   165 
       
   166 text{*All equivalence classes belong to set of representatives*}
       
   167 lemma msgrel_in_integ [simp]: "msgrel``{U} \<in> Msg"
       
   168 by (auto simp add: Msg_def quotient_def intro: msgrel_refl)
       
   169 
       
   170 lemma inj_on_Abs_Msg: "inj_on Abs_Msg Msg"
       
   171 apply (rule inj_on_inverseI)
       
   172 apply (erule Abs_Msg_inverse)
       
   173 done
       
   174 
       
   175 text{*Reduces equality on abstractions to equality on representatives*}
       
   176 declare inj_on_Abs_Msg [THEN inj_on_iff, simp]
       
   177 
       
   178 declare Abs_Msg_inverse [simp]
       
   179 
       
   180 
       
   181 subsubsection{*Characteristic Equations for the Abstract Constructors*}
       
   182 
       
   183 lemma MPair: "MPair (Abs_Msg(msgrel``{U})) (Abs_Msg(msgrel``{V})) = 
       
   184               Abs_Msg (msgrel``{MPAIR U V})"
       
   185 proof -
       
   186   have "congruent2 msgrel (\<lambda>U V. msgrel `` {MPAIR U V})"
       
   187     by (simp add: congruent2_def msgrel.MPAIR)
       
   188   thus ?thesis
       
   189     by (simp add: MPair_def UN_equiv_class2 [OF equiv_msgrel])
       
   190 qed
       
   191 
       
   192 lemma Crypt: "Crypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{CRYPT K U})"
       
   193 proof -
       
   194   have "congruent msgrel (\<lambda>U. msgrel `` {CRYPT K U})"
       
   195     by (simp add: congruent_def msgrel.CRYPT)
       
   196   thus ?thesis
       
   197     by (simp add: Crypt_def UN_equiv_class [OF equiv_msgrel])
       
   198 qed
       
   199 
       
   200 lemma Decrypt:
       
   201      "Decrypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{DECRYPT K U})"
       
   202 proof -
       
   203   have "congruent msgrel (\<lambda>U. msgrel `` {DECRYPT K U})"
       
   204     by (simp add: congruent_def msgrel.DECRYPT)
       
   205   thus ?thesis
       
   206     by (simp add: Decrypt_def UN_equiv_class [OF equiv_msgrel])
       
   207 qed
       
   208 
       
   209 text{*Case analysis on the representation of a msg as an equivalence class.*}
       
   210 lemma eq_Abs_Msg [case_names Abs_Msg, cases type: msg]:
       
   211      "(!!U. z = Abs_Msg(msgrel``{U}) ==> P) ==> P"
       
   212 apply (rule Rep_Msg [of z, unfolded Msg_def, THEN quotientE])
       
   213 apply (drule arg_cong [where f=Abs_Msg])
       
   214 apply (auto simp add: Rep_Msg_inverse intro: msgrel_refl)
       
   215 done
       
   216 
       
   217 text{*Establishing these two equations is the point of the whole exercise*}
       
   218 theorem CD_eq: "Crypt K (Decrypt K X) = X"
       
   219 by (cases X, simp add: Crypt Decrypt CD)
       
   220 
       
   221 theorem DC_eq: "Decrypt K (Crypt K X) = X"
       
   222 by (cases X, simp add: Crypt Decrypt DC)
       
   223 
       
   224 
       
   225 subsection{*The Abstract Function to Return the Set of Nonces*}
       
   226 
       
   227 constdefs
       
   228   nonces :: "msg \<Rightarrow> nat set"
       
   229    "nonces X == \<Union>U \<in> Rep_Msg(X). freenonces U"
       
   230 
       
   231 lemma nonces_congruent: "congruent msgrel (\<lambda>x. freenonces x)"
       
   232 by (simp add: congruent_def msgrel_imp_eq_freenonces) 
       
   233 
       
   234 
       
   235 text{*Now prove the four equations for @{term nonces}*}
       
   236 
       
   237 lemma nonces_Nonce [simp]: "nonces (Nonce N) = {N}"
       
   238 by (simp add: nonces_def Nonce_def 
       
   239               UN_equiv_class [OF equiv_msgrel nonces_congruent]) 
       
   240  
       
   241 lemma nonces_MPair [simp]: "nonces (MPair X Y) = nonces X \<union> nonces Y"
       
   242 apply (cases X, cases Y) 
       
   243 apply (simp add: nonces_def MPair 
       
   244                  UN_equiv_class [OF equiv_msgrel nonces_congruent]) 
       
   245 done
       
   246 
       
   247 lemma nonces_Crypt [simp]: "nonces (Crypt K X) = nonces X"
       
   248 apply (cases X) 
       
   249 apply (simp add: nonces_def Crypt
       
   250                  UN_equiv_class [OF equiv_msgrel nonces_congruent]) 
       
   251 done
       
   252 
       
   253 lemma nonces_Decrypt [simp]: "nonces (Decrypt K X) = nonces X"
       
   254 apply (cases X) 
       
   255 apply (simp add: nonces_def Decrypt
       
   256                  UN_equiv_class [OF equiv_msgrel nonces_congruent]) 
       
   257 done
       
   258 
       
   259 
       
   260 subsection{*The Abstract Function to Return the Left Part*}
       
   261 
       
   262 constdefs
       
   263   left :: "msg \<Rightarrow> msg"
       
   264    "left X == Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{free_left U})"
       
   265 
       
   266 lemma left_congruent: "congruent msgrel (\<lambda>U. msgrel `` {free_left U})"
       
   267 by (simp add: congruent_def msgrel_imp_eqv_free_left) 
       
   268 
       
   269 text{*Now prove the four equations for @{term left}*}
       
   270 
       
   271 lemma left_Nonce [simp]: "left (Nonce N) = Nonce N"
       
   272 by (simp add: left_def Nonce_def 
       
   273               UN_equiv_class [OF equiv_msgrel left_congruent]) 
       
   274 
       
   275 lemma left_MPair [simp]: "left (MPair X Y) = X"
       
   276 apply (cases X, cases Y) 
       
   277 apply (simp add: left_def MPair 
       
   278                  UN_equiv_class [OF equiv_msgrel left_congruent]) 
       
   279 done
       
   280 
       
   281 lemma left_Crypt [simp]: "left (Crypt K X) = left X"
       
   282 apply (cases X) 
       
   283 apply (simp add: left_def Crypt
       
   284                  UN_equiv_class [OF equiv_msgrel left_congruent]) 
       
   285 done
       
   286 
       
   287 lemma left_Decrypt [simp]: "left (Decrypt K X) = left X"
       
   288 apply (cases X) 
       
   289 apply (simp add: left_def Decrypt
       
   290                  UN_equiv_class [OF equiv_msgrel left_congruent]) 
       
   291 done
       
   292 
       
   293 
       
   294 subsection{*The Abstract Function to Return the Right Part*}
       
   295 
       
   296 constdefs
       
   297   right :: "msg \<Rightarrow> msg"
       
   298    "right X == Abs_Msg (\<Union>U \<in> Rep_Msg(X). msgrel``{free_right U})"
       
   299 
       
   300 lemma right_congruent: "congruent msgrel (\<lambda>U. msgrel `` {free_right U})"
       
   301 by (simp add: congruent_def msgrel_imp_eqv_free_right) 
       
   302 
       
   303 text{*Now prove the four equations for @{term right}*}
       
   304 
       
   305 lemma right_Nonce [simp]: "right (Nonce N) = Nonce N"
       
   306 by (simp add: right_def Nonce_def 
       
   307               UN_equiv_class [OF equiv_msgrel right_congruent]) 
       
   308 
       
   309 lemma right_MPair [simp]: "right (MPair X Y) = Y"
       
   310 apply (cases X, cases Y) 
       
   311 apply (simp add: right_def MPair 
       
   312                  UN_equiv_class [OF equiv_msgrel right_congruent]) 
       
   313 done
       
   314 
       
   315 lemma right_Crypt [simp]: "right (Crypt K X) = right X"
       
   316 apply (cases X) 
       
   317 apply (simp add: right_def Crypt
       
   318                  UN_equiv_class [OF equiv_msgrel right_congruent]) 
       
   319 done
       
   320 
       
   321 lemma right_Decrypt [simp]: "right (Decrypt K X) = right X"
       
   322 apply (cases X) 
       
   323 apply (simp add: right_def Decrypt
       
   324                  UN_equiv_class [OF equiv_msgrel right_congruent]) 
       
   325 done
       
   326 
       
   327 
       
   328 subsection{*Injectivity Properties of Some Constructors*}
       
   329 
       
   330 lemma NONCE_imp_eq: "NONCE m \<sim> NONCE n \<Longrightarrow> m = n"
       
   331 by (drule msgrel_imp_eq_freenonces, simp)
       
   332 
       
   333 text{*Can also be proved using the function @{term nonces}*}
       
   334 lemma Nonce_Nonce_eq [iff]: "(Nonce m = Nonce n) = (m = n)"
       
   335 by (auto simp add: Nonce_def msgrel_refl dest: NONCE_imp_eq)
       
   336 
       
   337 lemma MPAIR_imp_eqv_left: "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'"
       
   338 apply (drule msgrel_imp_eqv_free_left)
       
   339 apply (simp add: ); 
       
   340 done
       
   341 
       
   342 lemma MPair_imp_eq_left: 
       
   343   assumes eq: "MPair X Y = MPair X' Y'" shows "X = X'"
       
   344 proof -
       
   345   from eq
       
   346   have "left (MPair X Y) = left (MPair X' Y')" by simp
       
   347   thus ?thesis by simp
       
   348 qed
       
   349 
       
   350 lemma MPAIR_imp_eqv_right: "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'"
       
   351 apply (drule msgrel_imp_eqv_free_right)
       
   352 apply (simp add: ); 
       
   353 done
       
   354 
       
   355 lemma MPair_imp_eq_right: "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'" 
       
   356 apply (cases X, cases X', cases Y, cases Y') 
       
   357 apply (simp add: MPair)
       
   358 apply (erule MPAIR_imp_eqv_right)  
       
   359 done
       
   360 
       
   361 theorem MPair_MPair_eq [iff]: "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" 
       
   362 apply (blast dest: MPair_imp_eq_left MPair_imp_eq_right) 
       
   363 done
       
   364 
       
   365 lemma NONCE_neqv_MPAIR: "NONCE m \<sim> MPAIR X Y \<Longrightarrow> False"
       
   366 by (drule msgrel_imp_eq_isNONCE, simp)
       
   367 
       
   368 theorem Nonce_neq_MPair [iff]: "Nonce N \<noteq> MPair X Y"
       
   369 apply (cases X, cases Y) 
       
   370 apply (simp add: Nonce_def MPair) 
       
   371 apply (blast dest: NONCE_neqv_MPAIR) 
       
   372 done
       
   373 
       
   374 end
       
   375