1 (* Title: ZF/UNITY/Constrains.thy |
1 (* ID: $Id$ |
2 ID: $Id$ |
|
3 Author: Sidi O Ehmety, Computer Laboratory |
2 Author: Sidi O Ehmety, Computer Laboratory |
4 Copyright 2001 University of Cambridge |
3 Copyright 2001 University of Cambridge |
5 |
|
6 Safety relations: restricted to the set of reachable states. |
|
7 |
|
8 Theory ported from HOL. |
|
9 *) |
4 *) |
10 |
5 |
11 Constrains = UNITY + |
6 header{*Weak Safety Properties*} |
|
7 |
|
8 theory Constrains |
|
9 imports UNITY |
|
10 |
|
11 begin |
12 consts traces :: "[i, i] => i" |
12 consts traces :: "[i, i] => i" |
13 (* Initial states and program => (final state, reversed trace to it)... |
13 (* Initial states and program => (final state, reversed trace to it)... |
14 the domain may also be state*list(state) *) |
14 the domain may also be state*list(state) *) |
15 inductive |
15 inductive |
16 domains |
16 domains |
17 "traces(init, acts)" <= |
17 "traces(init, acts)" <= |
18 "(init Un (UN act:acts. field(act)))*list(UN act:acts. field(act))" |
18 "(init Un (UN act:acts. field(act)))*list(UN act:acts. field(act))" |
19 intrs |
19 intros |
20 (*Initial trace is empty*) |
20 (*Initial trace is empty*) |
21 Init "s: init ==> <s,[]> : traces(init,acts)" |
21 Init: "s: init ==> <s,[]> : traces(init,acts)" |
22 |
22 |
23 Acts "[| act:acts; <s,evs> : traces(init,acts); <s,s'>: act |] |
23 Acts: "[| act:acts; <s,evs> : traces(init,acts); <s,s'>: act |] |
24 ==> <s', Cons(s,evs)> : traces(init, acts)" |
24 ==> <s', Cons(s,evs)> : traces(init, acts)" |
25 |
25 |
26 type_intrs "list.intrs@[UnI1, UnI2, UN_I, fieldI2, fieldI1]" |
26 type_intros list.intros UnI1 UnI2 UN_I fieldI2 fieldI1 |
27 |
27 |
28 consts reachable :: "i=>i" |
28 |
29 |
29 consts reachable :: "i=>i" |
30 inductive |
30 inductive |
31 domains |
31 domains |
32 "reachable(F)" <= "Init(F) Un (UN act:Acts(F). field(act))" |
32 "reachable(F)" <= "Init(F) Un (UN act:Acts(F). field(act))" |
33 intrs |
33 intros |
34 Init "s:Init(F) ==> s:reachable(F)" |
34 Init: "s:Init(F) ==> s:reachable(F)" |
35 |
35 |
36 Acts "[| act: Acts(F); s:reachable(F); <s,s'>: act |] |
36 Acts: "[| act: Acts(F); s:reachable(F); <s,s'>: act |] |
37 ==> s':reachable(F)" |
37 ==> s':reachable(F)" |
38 |
38 |
39 type_intrs "[UnI1, UnI2, fieldI2, UN_I]" |
39 type_intros UnI1 UnI2 fieldI2 UN_I |
40 |
40 |
41 |
41 |
42 consts |
42 consts |
43 Constrains :: "[i,i] => i" (infixl "Co" 60) |
43 Constrains :: "[i,i] => i" (infixl "Co" 60) |
44 op_Unless :: "[i, i] => i" (infixl "Unless" 60) |
44 op_Unless :: "[i, i] => i" (infixl "Unless" 60) |
45 |
45 |
46 defs |
46 defs |
47 Constrains_def |
47 Constrains_def: |
48 "A Co B == {F:program. F:(reachable(F) Int A) co B}" |
48 "A Co B == {F:program. F:(reachable(F) Int A) co B}" |
49 |
49 |
50 Unless_def |
50 Unless_def: |
51 "A Unless B == (A-B) Co (A Un B)" |
51 "A Unless B == (A-B) Co (A Un B)" |
52 |
52 |
53 constdefs |
53 constdefs |
54 Stable :: "i => i" |
54 Stable :: "i => i" |
55 "Stable(A) == A Co A" |
55 "Stable(A) == A Co A" |
56 (*Always is the weak form of "invariant"*) |
56 (*Always is the weak form of "invariant"*) |
57 Always :: "i => i" |
57 Always :: "i => i" |
58 "Always(A) == initially(A) Int Stable(A)" |
58 "Always(A) == initially(A) Int Stable(A)" |
59 |
59 |
|
60 |
|
61 (*** traces and reachable ***) |
|
62 |
|
63 lemma reachable_type: "reachable(F) <= state" |
|
64 apply (cut_tac F = F in Init_type) |
|
65 apply (cut_tac F = F in Acts_type) |
|
66 apply (cut_tac F = F in reachable.dom_subset, blast) |
|
67 done |
|
68 |
|
69 lemma st_set_reachable: "st_set(reachable(F))" |
|
70 apply (unfold st_set_def) |
|
71 apply (rule reachable_type) |
|
72 done |
|
73 declare st_set_reachable [iff] |
|
74 |
|
75 lemma reachable_Int_state: "reachable(F) Int state = reachable(F)" |
|
76 by (cut_tac reachable_type, auto) |
|
77 declare reachable_Int_state [iff] |
|
78 |
|
79 lemma state_Int_reachable: "state Int reachable(F) = reachable(F)" |
|
80 by (cut_tac reachable_type, auto) |
|
81 declare state_Int_reachable [iff] |
|
82 |
|
83 lemma reachable_equiv_traces: |
|
84 "F \<in> program ==> reachable(F)={s \<in> state. \<exists>evs. <s,evs>:traces(Init(F), Acts(F))}" |
|
85 apply (rule equalityI, safe) |
|
86 apply (blast dest: reachable_type [THEN subsetD]) |
|
87 apply (erule_tac [2] traces.induct) |
|
88 apply (erule reachable.induct) |
|
89 apply (blast intro: reachable.intros traces.intros)+ |
|
90 done |
|
91 |
|
92 lemma Init_into_reachable: "Init(F) <= reachable(F)" |
|
93 by (blast intro: reachable.intros) |
|
94 |
|
95 lemma stable_reachable: "[| F \<in> program; G \<in> program; |
|
96 Acts(G) <= Acts(F) |] ==> G \<in> stable(reachable(F))" |
|
97 apply (blast intro: stableI constrainsI st_setI |
|
98 reachable_type [THEN subsetD] reachable.intros) |
|
99 done |
|
100 |
|
101 declare stable_reachable [intro!] |
|
102 declare stable_reachable [simp] |
|
103 |
|
104 (*The set of all reachable states is an invariant...*) |
|
105 lemma invariant_reachable: |
|
106 "F \<in> program ==> F \<in> invariant(reachable(F))" |
|
107 apply (unfold invariant_def initially_def) |
|
108 apply (blast intro: reachable_type [THEN subsetD] reachable.intros) |
|
109 done |
|
110 |
|
111 (*...in fact the strongest invariant!*) |
|
112 lemma invariant_includes_reachable: "F \<in> invariant(A) ==> reachable(F) <= A" |
|
113 apply (cut_tac F = F in Acts_type) |
|
114 apply (cut_tac F = F in Init_type) |
|
115 apply (cut_tac F = F in reachable_type) |
|
116 apply (simp (no_asm_use) add: stable_def constrains_def invariant_def initially_def) |
|
117 apply (rule subsetI) |
|
118 apply (erule reachable.induct) |
|
119 apply (blast intro: reachable.intros)+ |
|
120 done |
|
121 |
|
122 (*** Co ***) |
|
123 |
|
124 lemma constrains_reachable_Int: "F \<in> B co B'==>F:(reachable(F) Int B) co (reachable(F) Int B')" |
|
125 apply (frule constrains_type [THEN subsetD]) |
|
126 apply (frule stable_reachable [OF _ _ subset_refl]) |
|
127 apply (simp_all add: stable_def constrains_Int) |
|
128 done |
|
129 |
|
130 (*Resembles the previous definition of Constrains*) |
|
131 lemma Constrains_eq_constrains: |
|
132 "A Co B = {F \<in> program. F:(reachable(F) Int A) co (reachable(F) Int B)}" |
|
133 apply (unfold Constrains_def) |
|
134 apply (blast dest: constrains_reachable_Int constrains_type [THEN subsetD] |
|
135 intro: constrains_weaken) |
|
136 done |
|
137 |
|
138 lemmas Constrains_def2 = Constrains_eq_constrains [THEN eq_reflection] |
|
139 |
|
140 lemma constrains_imp_Constrains: "F \<in> A co A' ==> F \<in> A Co A'" |
|
141 apply (unfold Constrains_def) |
|
142 apply (blast intro: constrains_weaken_L dest: constrainsD2) |
|
143 done |
|
144 |
|
145 lemma ConstrainsI: |
|
146 "[|!!act s s'. [| act \<in> Acts(F); <s,s'>:act; s \<in> A |] ==> s':A'; |
|
147 F \<in> program|] |
|
148 ==> F \<in> A Co A'" |
|
149 apply (auto simp add: Constrains_def constrains_def st_set_def) |
|
150 apply (blast dest: reachable_type [THEN subsetD]) |
|
151 done |
|
152 |
|
153 lemma Constrains_type: |
|
154 "A Co B <= program" |
|
155 apply (unfold Constrains_def, blast) |
|
156 done |
|
157 |
|
158 lemma Constrains_empty: "F \<in> 0 Co B <-> F \<in> program" |
|
159 by (auto dest: Constrains_type [THEN subsetD] |
|
160 intro: constrains_imp_Constrains) |
|
161 declare Constrains_empty [iff] |
|
162 |
|
163 lemma Constrains_state: "F \<in> A Co state <-> F \<in> program" |
|
164 apply (unfold Constrains_def) |
|
165 apply (auto dest: Constrains_type [THEN subsetD] intro: constrains_imp_Constrains) |
|
166 done |
|
167 declare Constrains_state [iff] |
|
168 |
|
169 lemma Constrains_weaken_R: |
|
170 "[| F \<in> A Co A'; A'<=B' |] ==> F \<in> A Co B'" |
|
171 apply (unfold Constrains_def2) |
|
172 apply (blast intro: constrains_weaken_R) |
|
173 done |
|
174 |
|
175 lemma Constrains_weaken_L: |
|
176 "[| F \<in> A Co A'; B<=A |] ==> F \<in> B Co A'" |
|
177 apply (unfold Constrains_def2) |
|
178 apply (blast intro: constrains_weaken_L st_set_subset) |
|
179 done |
|
180 |
|
181 lemma Constrains_weaken: |
|
182 "[| F \<in> A Co A'; B<=A; A'<=B' |] ==> F \<in> B Co B'" |
|
183 apply (unfold Constrains_def2) |
|
184 apply (blast intro: constrains_weaken st_set_subset) |
|
185 done |
|
186 |
|
187 (** Union **) |
|
188 lemma Constrains_Un: |
|
189 "[| F \<in> A Co A'; F \<in> B Co B' |] ==> F \<in> (A Un B) Co (A' Un B')" |
|
190 apply (unfold Constrains_def2, auto) |
|
191 apply (simp add: Int_Un_distrib) |
|
192 apply (blast intro: constrains_Un) |
|
193 done |
|
194 |
|
195 lemma Constrains_UN: |
|
196 "[|(!!i. i \<in> I==>F \<in> A(i) Co A'(i)); F \<in> program|] |
|
197 ==> F:(\<Union>i \<in> I. A(i)) Co (\<Union>i \<in> I. A'(i))" |
|
198 by (auto intro: constrains_UN simp del: UN_simps |
|
199 simp add: Constrains_def2 Int_UN_distrib) |
|
200 |
|
201 |
|
202 (** Intersection **) |
|
203 |
|
204 lemma Constrains_Int: |
|
205 "[| F \<in> A Co A'; F \<in> B Co B'|]==> F:(A Int B) Co (A' Int B')" |
|
206 apply (unfold Constrains_def) |
|
207 apply (subgoal_tac "reachable (F) Int (A Int B) = (reachable (F) Int A) Int (reachable (F) Int B) ") |
|
208 apply (auto intro: constrains_Int) |
|
209 done |
|
210 |
|
211 lemma Constrains_INT: |
|
212 "[| (!!i. i \<in> I ==>F \<in> A(i) Co A'(i)); F \<in> program |] |
|
213 ==> F:(\<Inter>i \<in> I. A(i)) Co (\<Inter>i \<in> I. A'(i))" |
|
214 apply (simp (no_asm_simp) del: INT_simps add: Constrains_def INT_extend_simps) |
|
215 apply (rule constrains_INT) |
|
216 apply (auto simp add: Constrains_def) |
|
217 done |
|
218 |
|
219 lemma Constrains_imp_subset: "F \<in> A Co A' ==> reachable(F) Int A <= A'" |
|
220 apply (unfold Constrains_def) |
|
221 apply (blast dest: constrains_imp_subset) |
|
222 done |
|
223 |
|
224 lemma Constrains_trans: |
|
225 "[| F \<in> A Co B; F \<in> B Co C |] ==> F \<in> A Co C" |
|
226 apply (unfold Constrains_def2) |
|
227 apply (blast intro: constrains_trans constrains_weaken) |
|
228 done |
|
229 |
|
230 lemma Constrains_cancel: |
|
231 "[| F \<in> A Co (A' Un B); F \<in> B Co B' |] ==> F \<in> A Co (A' Un B')" |
|
232 apply (unfold Constrains_def2) |
|
233 apply (simp (no_asm_use) add: Int_Un_distrib) |
|
234 apply (blast intro: constrains_cancel) |
|
235 done |
|
236 |
|
237 (*** Stable ***) |
|
238 (* Useful because there's no Stable_weaken. [Tanja Vos] *) |
|
239 |
|
240 lemma stable_imp_Stable: |
|
241 "F \<in> stable(A) ==> F \<in> Stable(A)" |
|
242 |
|
243 apply (unfold stable_def Stable_def) |
|
244 apply (erule constrains_imp_Constrains) |
|
245 done |
|
246 |
|
247 lemma Stable_eq: "[| F \<in> Stable(A); A = B |] ==> F \<in> Stable(B)" |
|
248 by blast |
|
249 |
|
250 lemma Stable_eq_stable: |
|
251 "F \<in> Stable(A) <-> (F \<in> stable(reachable(F) Int A))" |
|
252 apply (auto dest: constrainsD2 simp add: Stable_def stable_def Constrains_def2) |
|
253 done |
|
254 |
|
255 lemma StableI: "F \<in> A Co A ==> F \<in> Stable(A)" |
|
256 by (unfold Stable_def, assumption) |
|
257 |
|
258 lemma StableD: "F \<in> Stable(A) ==> F \<in> A Co A" |
|
259 by (unfold Stable_def, assumption) |
|
260 |
|
261 lemma Stable_Un: |
|
262 "[| F \<in> Stable(A); F \<in> Stable(A') |] ==> F \<in> Stable(A Un A')" |
|
263 apply (unfold Stable_def) |
|
264 apply (blast intro: Constrains_Un) |
|
265 done |
|
266 |
|
267 lemma Stable_Int: |
|
268 "[| F \<in> Stable(A); F \<in> Stable(A') |] ==> F \<in> Stable (A Int A')" |
|
269 apply (unfold Stable_def) |
|
270 apply (blast intro: Constrains_Int) |
|
271 done |
|
272 |
|
273 lemma Stable_Constrains_Un: |
|
274 "[| F \<in> Stable(C); F \<in> A Co (C Un A') |] |
|
275 ==> F \<in> (C Un A) Co (C Un A')" |
|
276 apply (unfold Stable_def) |
|
277 apply (blast intro: Constrains_Un [THEN Constrains_weaken_R]) |
|
278 done |
|
279 |
|
280 lemma Stable_Constrains_Int: |
|
281 "[| F \<in> Stable(C); F \<in> (C Int A) Co A' |] |
|
282 ==> F \<in> (C Int A) Co (C Int A')" |
|
283 apply (unfold Stable_def) |
|
284 apply (blast intro: Constrains_Int [THEN Constrains_weaken]) |
|
285 done |
|
286 |
|
287 lemma Stable_UN: |
|
288 "[| (!!i. i \<in> I ==> F \<in> Stable(A(i))); F \<in> program |] |
|
289 ==> F \<in> Stable (\<Union>i \<in> I. A(i))" |
|
290 apply (simp add: Stable_def) |
|
291 apply (blast intro: Constrains_UN) |
|
292 done |
|
293 |
|
294 lemma Stable_INT: |
|
295 "[|(!!i. i \<in> I ==> F \<in> Stable(A(i))); F \<in> program |] |
|
296 ==> F \<in> Stable (\<Inter>i \<in> I. A(i))" |
|
297 apply (simp add: Stable_def) |
|
298 apply (blast intro: Constrains_INT) |
|
299 done |
|
300 |
|
301 lemma Stable_reachable: "F \<in> program ==>F \<in> Stable (reachable(F))" |
|
302 apply (simp (no_asm_simp) add: Stable_eq_stable Int_absorb) |
|
303 done |
|
304 |
|
305 lemma Stable_type: "Stable(A) <= program" |
|
306 apply (unfold Stable_def) |
|
307 apply (rule Constrains_type) |
|
308 done |
|
309 |
|
310 (*** The Elimination Theorem. The "free" m has become universally quantified! |
|
311 Should the premise be !!m instead of \<forall>m ? Would make it harder to use |
|
312 in forward proof. ***) |
|
313 |
|
314 lemma Elimination: |
|
315 "[| \<forall>m \<in> M. F \<in> ({s \<in> A. x(s) = m}) Co (B(m)); F \<in> program |] |
|
316 ==> F \<in> ({s \<in> A. x(s):M}) Co (\<Union>m \<in> M. B(m))" |
|
317 apply (unfold Constrains_def, auto) |
|
318 apply (rule_tac A1 = "reachable (F) Int A" |
|
319 in UNITY.elimination [THEN constrains_weaken_L]) |
|
320 apply (auto intro: constrains_weaken_L) |
|
321 done |
|
322 |
|
323 (* As above, but for the special case of A=state *) |
|
324 lemma Elimination2: |
|
325 "[| \<forall>m \<in> M. F \<in> {s \<in> state. x(s) = m} Co B(m); F \<in> program |] |
|
326 ==> F \<in> {s \<in> state. x(s):M} Co (\<Union>m \<in> M. B(m))" |
|
327 apply (blast intro: Elimination) |
|
328 done |
|
329 |
|
330 (** Unless **) |
|
331 |
|
332 lemma Unless_type: "A Unless B <=program" |
|
333 |
|
334 apply (unfold Unless_def) |
|
335 apply (rule Constrains_type) |
|
336 done |
|
337 |
|
338 (*** Specialized laws for handling Always ***) |
|
339 |
|
340 (** Natural deduction rules for "Always A" **) |
|
341 |
|
342 lemma AlwaysI: |
|
343 "[| Init(F)<=A; F \<in> Stable(A) |] ==> F \<in> Always(A)" |
|
344 |
|
345 apply (unfold Always_def initially_def) |
|
346 apply (frule Stable_type [THEN subsetD], auto) |
|
347 done |
|
348 |
|
349 lemma AlwaysD: "F \<in> Always(A) ==> Init(F)<=A & F \<in> Stable(A)" |
|
350 by (simp add: Always_def initially_def) |
|
351 |
|
352 lemmas AlwaysE = AlwaysD [THEN conjE, standard] |
|
353 lemmas Always_imp_Stable = AlwaysD [THEN conjunct2, standard] |
|
354 |
|
355 (*The set of all reachable states is Always*) |
|
356 lemma Always_includes_reachable: "F \<in> Always(A) ==> reachable(F) <= A" |
|
357 apply (simp (no_asm_use) add: Stable_def Constrains_def constrains_def Always_def initially_def) |
|
358 apply (rule subsetI) |
|
359 apply (erule reachable.induct) |
|
360 apply (blast intro: reachable.intros)+ |
|
361 done |
|
362 |
|
363 lemma invariant_imp_Always: |
|
364 "F \<in> invariant(A) ==> F \<in> Always(A)" |
|
365 apply (unfold Always_def invariant_def Stable_def stable_def) |
|
366 apply (blast intro: constrains_imp_Constrains) |
|
367 done |
|
368 |
|
369 lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always, standard] |
|
370 |
|
371 lemma Always_eq_invariant_reachable: "Always(A) = {F \<in> program. F \<in> invariant(reachable(F) Int A)}" |
|
372 apply (simp (no_asm) add: Always_def invariant_def Stable_def Constrains_def2 stable_def initially_def) |
|
373 apply (rule equalityI, auto) |
|
374 apply (blast intro: reachable.intros reachable_type) |
|
375 done |
|
376 |
|
377 (*the RHS is the traditional definition of the "always" operator*) |
|
378 lemma Always_eq_includes_reachable: "Always(A) = {F \<in> program. reachable(F) <= A}" |
|
379 apply (rule equalityI, safe) |
|
380 apply (auto dest: invariant_includes_reachable |
|
381 simp add: subset_Int_iff invariant_reachable Always_eq_invariant_reachable) |
|
382 done |
|
383 |
|
384 lemma Always_type: "Always(A) <= program" |
|
385 by (unfold Always_def initially_def, auto) |
|
386 |
|
387 lemma Always_state_eq: "Always(state) = program" |
|
388 apply (rule equalityI) |
|
389 apply (auto dest: Always_type [THEN subsetD] reachable_type [THEN subsetD] |
|
390 simp add: Always_eq_includes_reachable) |
|
391 done |
|
392 declare Always_state_eq [simp] |
|
393 |
|
394 lemma state_AlwaysI: "F \<in> program ==> F \<in> Always(state)" |
|
395 by (auto dest: reachable_type [THEN subsetD] |
|
396 simp add: Always_eq_includes_reachable) |
|
397 |
|
398 lemma Always_eq_UN_invariant: "st_set(A) ==> Always(A) = (\<Union>I \<in> Pow(A). invariant(I))" |
|
399 apply (simp (no_asm) add: Always_eq_includes_reachable) |
|
400 apply (rule equalityI, auto) |
|
401 apply (blast intro: invariantI rev_subsetD [OF _ Init_into_reachable] |
|
402 rev_subsetD [OF _ invariant_includes_reachable] |
|
403 dest: invariant_type [THEN subsetD])+ |
|
404 done |
|
405 |
|
406 lemma Always_weaken: "[| F \<in> Always(A); A <= B |] ==> F \<in> Always(B)" |
|
407 by (auto simp add: Always_eq_includes_reachable) |
|
408 |
|
409 |
|
410 (*** "Co" rules involving Always ***) |
|
411 lemmas Int_absorb2 = subset_Int_iff [unfolded iff_def, THEN conjunct1, THEN mp] |
|
412 |
|
413 lemma Always_Constrains_pre: "F \<in> Always(I) ==> (F:(I Int A) Co A') <-> (F \<in> A Co A')" |
|
414 apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_def Int_assoc [symmetric]) |
|
415 done |
|
416 |
|
417 lemma Always_Constrains_post: "F \<in> Always(I) ==> (F \<in> A Co (I Int A')) <->(F \<in> A Co A')" |
|
418 apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_eq_constrains Int_assoc [symmetric]) |
|
419 done |
|
420 |
|
421 lemma Always_ConstrainsI: "[| F \<in> Always(I); F \<in> (I Int A) Co A' |] ==> F \<in> A Co A'" |
|
422 by (blast intro: Always_Constrains_pre [THEN iffD1]) |
|
423 |
|
424 (* [| F \<in> Always(I); F \<in> A Co A' |] ==> F \<in> A Co (I Int A') *) |
|
425 lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2, standard] |
|
426 |
|
427 (*The analogous proof of Always_LeadsTo_weaken doesn't terminate*) |
|
428 lemma Always_Constrains_weaken: |
|
429 "[|F \<in> Always(C); F \<in> A Co A'; C Int B<=A; C Int A'<=B'|]==>F \<in> B Co B'" |
|
430 apply (rule Always_ConstrainsI) |
|
431 apply (drule_tac [2] Always_ConstrainsD, simp_all) |
|
432 apply (blast intro: Constrains_weaken) |
|
433 done |
|
434 |
|
435 (** Conjoining Always properties **) |
|
436 lemma Always_Int_distrib: "Always(A Int B) = Always(A) Int Always(B)" |
|
437 by (auto simp add: Always_eq_includes_reachable) |
|
438 |
|
439 (* the premise i \<in> I is need since \<Inter>is formally not defined for I=0 *) |
|
440 lemma Always_INT_distrib: "i \<in> I==>Always(\<Inter>i \<in> I. A(i)) = (\<Inter>i \<in> I. Always(A(i)))" |
|
441 apply (rule equalityI) |
|
442 apply (auto simp add: Inter_iff Always_eq_includes_reachable) |
|
443 done |
|
444 |
|
445 |
|
446 lemma Always_Int_I: "[| F \<in> Always(A); F \<in> Always(B) |] ==> F \<in> Always(A Int B)" |
|
447 apply (simp (no_asm_simp) add: Always_Int_distrib) |
|
448 done |
|
449 |
|
450 (*Allows a kind of "implication introduction"*) |
|
451 lemma Always_Diff_Un_eq: "[| F \<in> Always(A) |] ==> (F \<in> Always(C-A Un B)) <-> (F \<in> Always(B))" |
|
452 by (auto simp add: Always_eq_includes_reachable) |
|
453 |
|
454 (*Delete the nearest invariance assumption (which will be the second one |
|
455 used by Always_Int_I) *) |
|
456 lemmas Always_thin = thin_rl [of "F \<in> Always(A)", standard] |
|
457 |
|
458 ML |
|
459 {* |
|
460 val reachable_type = thm "reachable_type"; |
|
461 val st_set_reachable = thm "st_set_reachable"; |
|
462 val reachable_Int_state = thm "reachable_Int_state"; |
|
463 val state_Int_reachable = thm "state_Int_reachable"; |
|
464 val reachable_equiv_traces = thm "reachable_equiv_traces"; |
|
465 val Init_into_reachable = thm "Init_into_reachable"; |
|
466 val stable_reachable = thm "stable_reachable"; |
|
467 val invariant_reachable = thm "invariant_reachable"; |
|
468 val invariant_includes_reachable = thm "invariant_includes_reachable"; |
|
469 val constrains_reachable_Int = thm "constrains_reachable_Int"; |
|
470 val Constrains_eq_constrains = thm "Constrains_eq_constrains"; |
|
471 val Constrains_def2 = thm "Constrains_def2"; |
|
472 val constrains_imp_Constrains = thm "constrains_imp_Constrains"; |
|
473 val ConstrainsI = thm "ConstrainsI"; |
|
474 val Constrains_type = thm "Constrains_type"; |
|
475 val Constrains_empty = thm "Constrains_empty"; |
|
476 val Constrains_state = thm "Constrains_state"; |
|
477 val Constrains_weaken_R = thm "Constrains_weaken_R"; |
|
478 val Constrains_weaken_L = thm "Constrains_weaken_L"; |
|
479 val Constrains_weaken = thm "Constrains_weaken"; |
|
480 val Constrains_Un = thm "Constrains_Un"; |
|
481 val Constrains_UN = thm "Constrains_UN"; |
|
482 val Constrains_Int = thm "Constrains_Int"; |
|
483 val Constrains_INT = thm "Constrains_INT"; |
|
484 val Constrains_imp_subset = thm "Constrains_imp_subset"; |
|
485 val Constrains_trans = thm "Constrains_trans"; |
|
486 val Constrains_cancel = thm "Constrains_cancel"; |
|
487 val stable_imp_Stable = thm "stable_imp_Stable"; |
|
488 val Stable_eq = thm "Stable_eq"; |
|
489 val Stable_eq_stable = thm "Stable_eq_stable"; |
|
490 val StableI = thm "StableI"; |
|
491 val StableD = thm "StableD"; |
|
492 val Stable_Un = thm "Stable_Un"; |
|
493 val Stable_Int = thm "Stable_Int"; |
|
494 val Stable_Constrains_Un = thm "Stable_Constrains_Un"; |
|
495 val Stable_Constrains_Int = thm "Stable_Constrains_Int"; |
|
496 val Stable_UN = thm "Stable_UN"; |
|
497 val Stable_INT = thm "Stable_INT"; |
|
498 val Stable_reachable = thm "Stable_reachable"; |
|
499 val Stable_type = thm "Stable_type"; |
|
500 val Elimination = thm "Elimination"; |
|
501 val Elimination2 = thm "Elimination2"; |
|
502 val Unless_type = thm "Unless_type"; |
|
503 val AlwaysI = thm "AlwaysI"; |
|
504 val AlwaysD = thm "AlwaysD"; |
|
505 val AlwaysE = thm "AlwaysE"; |
|
506 val Always_imp_Stable = thm "Always_imp_Stable"; |
|
507 val Always_includes_reachable = thm "Always_includes_reachable"; |
|
508 val invariant_imp_Always = thm "invariant_imp_Always"; |
|
509 val Always_reachable = thm "Always_reachable"; |
|
510 val Always_eq_invariant_reachable = thm "Always_eq_invariant_reachable"; |
|
511 val Always_eq_includes_reachable = thm "Always_eq_includes_reachable"; |
|
512 val Always_type = thm "Always_type"; |
|
513 val Always_state_eq = thm "Always_state_eq"; |
|
514 val state_AlwaysI = thm "state_AlwaysI"; |
|
515 val Always_eq_UN_invariant = thm "Always_eq_UN_invariant"; |
|
516 val Always_weaken = thm "Always_weaken"; |
|
517 val Int_absorb2 = thm "Int_absorb2"; |
|
518 val Always_Constrains_pre = thm "Always_Constrains_pre"; |
|
519 val Always_Constrains_post = thm "Always_Constrains_post"; |
|
520 val Always_ConstrainsI = thm "Always_ConstrainsI"; |
|
521 val Always_ConstrainsD = thm "Always_ConstrainsD"; |
|
522 val Always_Constrains_weaken = thm "Always_Constrains_weaken"; |
|
523 val Always_Int_distrib = thm "Always_Int_distrib"; |
|
524 val Always_INT_distrib = thm "Always_INT_distrib"; |
|
525 val Always_Int_I = thm "Always_Int_I"; |
|
526 val Always_Diff_Un_eq = thm "Always_Diff_Un_eq"; |
|
527 val Always_thin = thm "Always_thin"; |
|
528 |
|
529 (*Combines two invariance ASSUMPTIONS into one. USEFUL??*) |
|
530 val Always_Int_tac = dtac Always_Int_I THEN' assume_tac THEN' etac Always_thin; |
|
531 |
|
532 (*Combines a list of invariance THEOREMS into one.*) |
|
533 val Always_Int_rule = foldr1 (fn (th1,th2) => [th1,th2] MRS Always_Int_I); |
|
534 |
|
535 (*To allow expansion of the program's definition when appropriate*) |
|
536 val program_defs_ref = ref ([]: thm list); |
|
537 |
|
538 (*proves "co" properties when the program is specified*) |
|
539 |
|
540 fun gen_constrains_tac(cs,ss) i = |
|
541 SELECT_GOAL |
|
542 (EVERY [REPEAT (Always_Int_tac 1), |
|
543 REPEAT (etac Always_ConstrainsI 1 |
|
544 ORELSE |
|
545 resolve_tac [StableI, stableI, |
|
546 constrains_imp_Constrains] 1), |
|
547 rtac constrainsI 1, |
|
548 (* Three subgoals *) |
|
549 rewrite_goal_tac [st_set_def] 3, |
|
550 REPEAT (Force_tac 2), |
|
551 full_simp_tac (ss addsimps !program_defs_ref) 1, |
|
552 ALLGOALS (clarify_tac cs), |
|
553 REPEAT (FIRSTGOAL (etac disjE)), |
|
554 ALLGOALS Clarify_tac, |
|
555 REPEAT (FIRSTGOAL (etac disjE)), |
|
556 ALLGOALS (clarify_tac cs), |
|
557 ALLGOALS (asm_full_simp_tac ss), |
|
558 ALLGOALS (clarify_tac cs)]) i; |
|
559 |
|
560 fun constrains_tac st = gen_constrains_tac (claset(), simpset()) st; |
|
561 |
|
562 (*For proving invariants*) |
|
563 fun always_tac i = |
|
564 rtac AlwaysI i THEN Force_tac i THEN constrains_tac i; |
|
565 *} |
|
566 |
|
567 method_setup constrains = {* |
|
568 Method.ctxt_args (fn ctxt => |
|
569 Method.METHOD (fn facts => |
|
570 gen_constrains_tac (local_clasimpset_of ctxt) 1)) *} |
|
571 "for proving safety properties" |
|
572 |
|
573 |
60 end |
574 end |
61 |
575 |