src/HOL/Bali/AxCompl.thy
changeset 61076 bdc1e2f0a86a
parent 60754 02924903a6fd
child 61424 c3658c18b7bc
equal deleted inserted replaced
61075:f6b0d827240e 61076:bdc1e2f0a86a
   857 
   857 
   858 lemma MGFn_Fin:
   858 lemma MGFn_Fin:
   859   assumes wf: "wf_prog G" 
   859   assumes wf: "wf_prog G" 
   860   and     mgf_c1: "G,A\<turnstile>{=:n} \<langle>c1\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   860   and     mgf_c1: "G,A\<turnstile>{=:n} \<langle>c1\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   861   and     mgf_c2: "G,A\<turnstile>{=:n} \<langle>c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   861   and     mgf_c2: "G,A\<turnstile>{=:n} \<langle>c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   862   shows "G,(A\<Colon>state triple set)\<turnstile>{=:n} \<langle>c1 Finally c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   862   shows "G,(A::state triple set)\<turnstile>{=:n} \<langle>c1 Finally c2\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   863 proof (rule MGFn_free_wt_da_NormalConformI [rule_format],clarsimp)
   863 proof (rule MGFn_free_wt_da_NormalConformI [rule_format],clarsimp)
   864   fix T L accC C 
   864   fix T L accC C 
   865   assume wt: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>In1r (c1 Finally c2)\<Colon>T"
   865   assume wt: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>In1r (c1 Finally c2)\<Colon>T"
   866   then obtain
   866   then obtain
   867     wt_c1: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>c1\<Colon>\<surd>" and
   867     wt_c1: "\<lparr>prg=G,cls=accC,lcl=L\<rparr>\<turnstile>c1\<Colon>\<surd>" and
   954 
   954 
   955 lemma MGFn_Body:
   955 lemma MGFn_Body:
   956   assumes wf: "wf_prog G"
   956   assumes wf: "wf_prog G"
   957   and     mgf_init: "G,A\<turnstile>{=:n} \<langle>Init D\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   957   and     mgf_init: "G,A\<turnstile>{=:n} \<langle>Init D\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   958   and     mgf_c: "G,A\<turnstile>{=:n} \<langle>c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   958   and     mgf_c: "G,A\<turnstile>{=:n} \<langle>c\<rangle>\<^sub>s\<succ> {G\<rightarrow>}"
   959   shows  "G,(A\<Colon>state triple set)\<turnstile>{=:n} \<langle>Body D c\<rangle>\<^sub>e\<succ> {G\<rightarrow>}"
   959   shows  "G,(A::state triple set)\<turnstile>{=:n} \<langle>Body D c\<rangle>\<^sub>e\<succ> {G\<rightarrow>}"
   960 proof (rule MGFn_free_wt_da_NormalConformI [rule_format],clarsimp)
   960 proof (rule MGFn_free_wt_da_NormalConformI [rule_format],clarsimp)
   961   fix T L accC E
   961   fix T L accC E
   962   assume wt: "\<lparr>prg=G, cls=accC,lcl=L\<rparr>\<turnstile>\<langle>Body D c\<rangle>\<^sub>e\<Colon>T"
   962   assume wt: "\<lparr>prg=G, cls=accC,lcl=L\<rparr>\<turnstile>\<langle>Body D c\<rangle>\<^sub>e\<Colon>T"
   963   let ?Q="(\<lambda>Y' s' s. normal s \<and> G\<turnstile>s \<midarrow>Init D\<rightarrow> s' \<and> jumpNestingOkS {Ret} c) 
   963   let ?Q="(\<lambda>Y' s' s. normal s \<and> G\<turnstile>s \<midarrow>Init D\<rightarrow> s' \<and> jumpNestingOkS {Ret} c) 
   964           \<and>. G\<turnstile>init\<le>n" 
   964           \<and>. G\<turnstile>init\<le>n"