src/HOL/Metis_Examples/Sets.thy
changeset 61076 bdc1e2f0a86a
parent 58889 5b7a9633cfa8
child 63167 0909deb8059b
equal deleted inserted replaced
61075:f6b0d827240e 61076:bdc1e2f0a86a
    25 
    25 
    26 (*multiple versions of this example*)
    26 (*multiple versions of this example*)
    27 lemma (*equal_union: *)
    27 lemma (*equal_union: *)
    28    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
    28    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
    29 proof -
    29 proof -
    30   have F1: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>1 \<union> x\<^sub>2" by (metis Un_commute Un_upper2)
    30   have F1: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>1 \<union> x\<^sub>2" by (metis Un_commute Un_upper2)
    31   have F2a: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<longrightarrow> x\<^sub>2 = x\<^sub>2 \<union> x\<^sub>1" by (metis Un_commute subset_Un_eq)
    31   have F2a: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<longrightarrow> x\<^sub>2 = x\<^sub>2 \<union> x\<^sub>1" by (metis Un_commute subset_Un_eq)
    32   have F2: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis F2a subset_Un_eq)
    32   have F2: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis F2a subset_Un_eq)
    33   { assume "\<not> Z \<subseteq> X"
    33   { assume "\<not> Z \<subseteq> X"
    34     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    34     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    35   moreover
    35   moreover
    36   { assume AA1: "Y \<union> Z \<noteq> X"
    36   { assume AA1: "Y \<union> Z \<noteq> X"
    37     { assume "\<not> Y \<subseteq> X"
    37     { assume "\<not> Y \<subseteq> X"
    38       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1) }
    38       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1) }
    39     moreover
    39     moreover
    40     { assume AAA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    40     { assume AAA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    41       { assume "\<not> Z \<subseteq> X"
    41       { assume "\<not> Z \<subseteq> X"
    42         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    42         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    43       moreover
    43       moreover
    44       { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
    44       { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
    45         hence "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z" by (metis Un_subset_iff)
    45         hence "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z" by (metis Un_subset_iff)
    46         hence "Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> Y \<union> Z" by (metis F2)
    46         hence "Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> Y \<union> Z" by (metis F2)
    47         hence "\<exists>x\<^sub>1\<Colon>'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1)
    47         hence "\<exists>x\<^sub>1::'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1)
    48         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    48         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    49       ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AAA1) }
    49       ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AAA1) }
    50     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1) }
    50     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1) }
    51   moreover
    51   moreover
    52   { assume "\<exists>x\<^sub>1\<Colon>'a set. (Z \<subseteq> x\<^sub>1 \<and> Y \<subseteq> x\<^sub>1) \<and> \<not> X \<subseteq> x\<^sub>1"
    52   { assume "\<exists>x\<^sub>1::'a set. (Z \<subseteq> x\<^sub>1 \<and> Y \<subseteq> x\<^sub>1) \<and> \<not> X \<subseteq> x\<^sub>1"
    53     { assume "\<not> Y \<subseteq> X"
    53     { assume "\<not> Y \<subseteq> X"
    54       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1) }
    54       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1) }
    55     moreover
    55     moreover
    56     { assume AAA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    56     { assume AAA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    57       { assume "\<not> Z \<subseteq> X"
    57       { assume "\<not> Z \<subseteq> X"
    58         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    58         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    59       moreover
    59       moreover
    60       { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
    60       { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
    61         hence "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z" by (metis Un_subset_iff)
    61         hence "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z" by (metis Un_subset_iff)
    62         hence "Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> Y \<union> Z" by (metis F2)
    62         hence "Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> Y \<union> Z" by (metis F2)
    63         hence "\<exists>x\<^sub>1\<Colon>'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1)
    63         hence "\<exists>x\<^sub>1::'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1)
    64         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    64         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    65       ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AAA1) }
    65       ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AAA1) }
    66     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by blast }
    66     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by blast }
    67   moreover
    67   moreover
    68   { assume "\<not> Y \<subseteq> X"
    68   { assume "\<not> Y \<subseteq> X"
    69     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1) }
    69     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1) }
    70   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by metis
    70   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by metis
    71 qed
    71 qed
    72 
    72 
    73 sledgehammer_params [isar_proofs, compress = 2]
    73 sledgehammer_params [isar_proofs, compress = 2]
    74 
    74 
    75 lemma (*equal_union: *)
    75 lemma (*equal_union: *)
    76    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
    76    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
    77 proof -
    77 proof -
    78   have F1: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis Un_commute subset_Un_eq)
    78   have F1: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis Un_commute subset_Un_eq)
    79   { assume AA1: "\<exists>x\<^sub>1\<Colon>'a set. (Z \<subseteq> x\<^sub>1 \<and> Y \<subseteq> x\<^sub>1) \<and> \<not> X \<subseteq> x\<^sub>1"
    79   { assume AA1: "\<exists>x\<^sub>1::'a set. (Z \<subseteq> x\<^sub>1 \<and> Y \<subseteq> x\<^sub>1) \<and> \<not> X \<subseteq> x\<^sub>1"
    80     { assume AAA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    80     { assume AAA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    81       { assume "\<not> Z \<subseteq> X"
    81       { assume "\<not> Z \<subseteq> X"
    82         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    82         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    83       moreover
    83       moreover
    84       { assume "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z"
    84       { assume "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z"
    85         hence "\<exists>x\<^sub>1\<Colon>'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1 Un_commute Un_upper2)
    85         hence "\<exists>x\<^sub>1::'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1 Un_commute Un_upper2)
    86         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    86         hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    87       ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AAA1 Un_subset_iff) }
    87       ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AAA1 Un_subset_iff) }
    88     moreover
    88     moreover
    89     { assume "\<not> Y \<subseteq> X"
    89     { assume "\<not> Y \<subseteq> X"
    90       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2) }
    90       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2) }
    91     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 Un_subset_iff) }
    91     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 Un_subset_iff) }
    92   moreover
    92   moreover
    93   { assume "\<not> Z \<subseteq> X"
    93   { assume "\<not> Z \<subseteq> X"
    94     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    94     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
    95   moreover
    95   moreover
    96   { assume "\<not> Y \<subseteq> X"
    96   { assume "\<not> Y \<subseteq> X"
    97     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2) }
    97     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2) }
    98   moreover
    98   moreover
    99   { assume AA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
    99   { assume AA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
   100     { assume "\<not> Z \<subseteq> X"
   100     { assume "\<not> Z \<subseteq> X"
   101       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
   101       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
   102     moreover
   102     moreover
   103     { assume "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z"
   103     { assume "Y \<union> Z \<subseteq> X \<and> X \<noteq> Y \<union> Z"
   104       hence "\<exists>x\<^sub>1\<Colon>'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1 Un_commute Un_upper2)
   104       hence "\<exists>x\<^sub>1::'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z" by (metis F1 Un_commute Un_upper2)
   105       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
   105       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
   106     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 Un_subset_iff) }
   106     ultimately have "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 Un_subset_iff) }
   107   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by metis
   107   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by metis
   108 qed
   108 qed
   109 
   109 
   110 sledgehammer_params [isar_proofs, compress = 3]
   110 sledgehammer_params [isar_proofs, compress = 3]
   111 
   111 
   112 lemma (*equal_union: *)
   112 lemma (*equal_union: *)
   113    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
   113    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
   114 proof -
   114 proof -
   115   have F1a: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<longrightarrow> x\<^sub>2 = x\<^sub>2 \<union> x\<^sub>1" by (metis Un_commute subset_Un_eq)
   115   have F1a: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<longrightarrow> x\<^sub>2 = x\<^sub>2 \<union> x\<^sub>1" by (metis Un_commute subset_Un_eq)
   116   have F1: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis F1a subset_Un_eq)
   116   have F1: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis F1a subset_Un_eq)
   117   { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
   117   { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
   118     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1 Un_commute Un_subset_iff Un_upper2) }
   118     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1 Un_commute Un_subset_iff Un_upper2) }
   119   moreover
   119   moreover
   120   { assume AA1: "\<exists>x\<^sub>1\<Colon>'a set. (Z \<subseteq> x\<^sub>1 \<and> Y \<subseteq> x\<^sub>1) \<and> \<not> X \<subseteq> x\<^sub>1"
   120   { assume AA1: "\<exists>x\<^sub>1::'a set. (Z \<subseteq> x\<^sub>1 \<and> Y \<subseteq> x\<^sub>1) \<and> \<not> X \<subseteq> x\<^sub>1"
   121     { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
   121     { assume "(Z \<subseteq> X \<and> Y \<subseteq> X) \<and> Y \<union> Z \<noteq> X"
   122       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1 Un_commute Un_subset_iff Un_upper2) }
   122       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis F1 Un_commute Un_subset_iff Un_upper2) }
   123     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 Un_commute Un_subset_iff Un_upper2) }
   123     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 Un_commute Un_subset_iff Un_upper2) }
   124   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2)
   124   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2)
   125 qed
   125 qed
   126 
   126 
   127 sledgehammer_params [isar_proofs, compress = 4]
   127 sledgehammer_params [isar_proofs, compress = 4]
   128 
   128 
   129 lemma (*equal_union: *)
   129 lemma (*equal_union: *)
   130    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
   130    "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))"
   131 proof -
   131 proof -
   132   have F1: "\<forall>(x\<^sub>2\<Colon>'b set) x\<^sub>1\<Colon>'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis Un_commute subset_Un_eq)
   132   have F1: "\<forall>(x\<^sub>2::'b set) x\<^sub>1::'b set. x\<^sub>1 \<subseteq> x\<^sub>2 \<and> x\<^sub>2 \<subseteq> x\<^sub>1 \<longrightarrow> x\<^sub>1 = x\<^sub>2" by (metis Un_commute subset_Un_eq)
   133   { assume "\<not> Y \<subseteq> X"
   133   { assume "\<not> Y \<subseteq> X"
   134     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2) }
   134     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_commute Un_upper2) }
   135   moreover
   135   moreover
   136   { assume AA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
   136   { assume AA1: "Y \<subseteq> X \<and> Y \<union> Z \<noteq> X"
   137     { assume "\<exists>x\<^sub>1\<Colon>'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z"
   137     { assume "\<exists>x\<^sub>1::'a set. Y \<subseteq> x\<^sub>1 \<union> Z \<and> Y \<union> Z \<noteq> X \<and> \<not> X \<subseteq> x\<^sub>1 \<union> Z"
   138       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
   138       hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_upper2) }
   139     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 F1 Un_commute Un_subset_iff Un_upper2) }
   139     hence "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis AA1 F1 Un_commute Un_subset_iff Un_upper2) }
   140   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V\<Colon>'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_subset_iff Un_upper2)
   140   ultimately show "(X = Y \<union> Z) = (Y \<subseteq> X \<and> Z \<subseteq> X \<and> (\<forall>V::'a set. Y \<subseteq> V \<and> Z \<subseteq> V \<longrightarrow> X \<subseteq> V))" by (metis Un_subset_iff Un_upper2)
   141 qed
   141 qed
   142 
   142 
   143 sledgehammer_params [isar_proofs, compress = 1]
   143 sledgehammer_params [isar_proofs, compress = 1]
   144 
   144 
   145 lemma (*equal_union: *)
   145 lemma (*equal_union: *)
   152 lemma fixedpoint: "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y"
   152 lemma fixedpoint: "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y"
   153 by metis
   153 by metis
   154 
   154 
   155 lemma (* fixedpoint: *) "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y"
   155 lemma (* fixedpoint: *) "\<exists>!x. f (g x) = x \<Longrightarrow> \<exists>!y. g (f y) = y"
   156 proof -
   156 proof -
   157   assume "\<exists>!x\<Colon>'a. f (g x) = x"
   157   assume "\<exists>!x::'a. f (g x) = x"
   158   thus "\<exists>!y\<Colon>'b. g (f y) = y" by metis
   158   thus "\<exists>!y::'b. g (f y) = y" by metis
   159 qed
   159 qed
   160 
   160 
   161 lemma (* singleton_example_2: *)
   161 lemma (* singleton_example_2: *)
   162      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
   162      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
   163 by (metis Set.subsetI Union_upper insertCI set_eq_subset)
   163 by (metis Set.subsetI Union_upper insertCI set_eq_subset)
   170      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
   170      "\<forall>x \<in> S. \<Union>S \<subseteq> x \<Longrightarrow> \<exists>z. S \<subseteq> {z}"
   171 proof -
   171 proof -
   172   assume "\<forall>x \<in> S. \<Union>S \<subseteq> x"
   172   assume "\<forall>x \<in> S. \<Union>S \<subseteq> x"
   173   hence "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> \<Union>S \<and> x\<^sub>1 \<in> S \<longrightarrow> x\<^sub>1 = \<Union>S" by (metis set_eq_subset)
   173   hence "\<forall>x\<^sub>1. x\<^sub>1 \<subseteq> \<Union>S \<and> x\<^sub>1 \<in> S \<longrightarrow> x\<^sub>1 = \<Union>S" by (metis set_eq_subset)
   174   hence "\<forall>x\<^sub>1. x\<^sub>1 \<in> S \<longrightarrow> x\<^sub>1 = \<Union>S" by (metis Union_upper)
   174   hence "\<forall>x\<^sub>1. x\<^sub>1 \<in> S \<longrightarrow> x\<^sub>1 = \<Union>S" by (metis Union_upper)
   175   hence "\<forall>x\<^sub>1\<Colon>('a set) set. \<Union>S \<in> x\<^sub>1 \<longrightarrow> S \<subseteq> x\<^sub>1" by (metis subsetI)
   175   hence "\<forall>x\<^sub>1::('a set) set. \<Union>S \<in> x\<^sub>1 \<longrightarrow> S \<subseteq> x\<^sub>1" by (metis subsetI)
   176   hence "\<forall>x\<^sub>1\<Colon>('a set) set. S \<subseteq> insert (\<Union>S) x\<^sub>1" by (metis insert_iff)
   176   hence "\<forall>x\<^sub>1::('a set) set. S \<subseteq> insert (\<Union>S) x\<^sub>1" by (metis insert_iff)
   177   thus "\<exists>z. S \<subseteq> {z}" by metis
   177   thus "\<exists>z. S \<subseteq> {z}" by metis
   178 qed
   178 qed
   179 
   179 
   180 text {*
   180 text {*
   181   From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages
   181   From W. W. Bledsoe and Guohui Feng, SET-VAR. JAR 11 (3), 1993, pages