src/HOL/Hahn_Banach/Function_Norm.thy
changeset 31795 be3e1cc5005c
parent 29291 d3cc5398bad5
child 32960 69916a850301
equal deleted inserted replaced
31794:71af1fd6a5e4 31795:be3e1cc5005c
       
     1 (*  Title:      HOL/Hahn_Banach/Function_Norm.thy
       
     2     Author:     Gertrud Bauer, TU Munich
       
     3 *)
       
     4 
       
     5 header {* The norm of a function *}
       
     6 
       
     7 theory Function_Norm
       
     8 imports Normed_Space Function_Order
       
     9 begin
       
    10 
       
    11 subsection {* Continuous linear forms*}
       
    12 
       
    13 text {*
       
    14   A linear form @{text f} on a normed vector space @{text "(V, \<parallel>\<cdot>\<parallel>)"}
       
    15   is \emph{continuous}, iff it is bounded, i.e.
       
    16   \begin{center}
       
    17   @{text "\<exists>c \<in> R. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
       
    18   \end{center}
       
    19   In our application no other functions than linear forms are
       
    20   considered, so we can define continuous linear forms as bounded
       
    21   linear forms:
       
    22 *}
       
    23 
       
    24 locale continuous = var_V + norm_syntax + linearform +
       
    25   assumes bounded: "\<exists>c. \<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
       
    26 
       
    27 declare continuous.intro [intro?] continuous_axioms.intro [intro?]
       
    28 
       
    29 lemma continuousI [intro]:
       
    30   fixes norm :: "_ \<Rightarrow> real"  ("\<parallel>_\<parallel>")
       
    31   assumes "linearform V f"
       
    32   assumes r: "\<And>x. x \<in> V \<Longrightarrow> \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>"
       
    33   shows "continuous V norm f"
       
    34 proof
       
    35   show "linearform V f" by fact
       
    36   from r have "\<exists>c. \<forall>x\<in>V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" by blast
       
    37   then show "continuous_axioms V norm f" ..
       
    38 qed
       
    39 
       
    40 
       
    41 subsection {* The norm of a linear form *}
       
    42 
       
    43 text {*
       
    44   The least real number @{text c} for which holds
       
    45   \begin{center}
       
    46   @{text "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
       
    47   \end{center}
       
    48   is called the \emph{norm} of @{text f}.
       
    49 
       
    50   For non-trivial vector spaces @{text "V \<noteq> {0}"} the norm can be
       
    51   defined as
       
    52   \begin{center}
       
    53   @{text "\<parallel>f\<parallel> = \<sup>x \<noteq> 0. \<bar>f x\<bar> / \<parallel>x\<parallel>"}
       
    54   \end{center}
       
    55 
       
    56   For the case @{text "V = {0}"} the supremum would be taken from an
       
    57   empty set. Since @{text \<real>} is unbounded, there would be no supremum.
       
    58   To avoid this situation it must be guaranteed that there is an
       
    59   element in this set. This element must be @{text "{} \<ge> 0"} so that
       
    60   @{text fn_norm} has the norm properties. Furthermore it does not
       
    61   have to change the norm in all other cases, so it must be @{text 0},
       
    62   as all other elements are @{text "{} \<ge> 0"}.
       
    63 
       
    64   Thus we define the set @{text B} where the supremum is taken from as
       
    65   follows:
       
    66   \begin{center}
       
    67   @{text "{0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel>. x \<noteq> 0 \<and> x \<in> F}"}
       
    68   \end{center}
       
    69 
       
    70   @{text fn_norm} is equal to the supremum of @{text B}, if the
       
    71   supremum exists (otherwise it is undefined).
       
    72 *}
       
    73 
       
    74 locale fn_norm = norm_syntax +
       
    75   fixes B defines "B V f \<equiv> {0} \<union> {\<bar>f x\<bar> / \<parallel>x\<parallel> | x. x \<noteq> 0 \<and> x \<in> V}"
       
    76   fixes fn_norm ("\<parallel>_\<parallel>\<hyphen>_" [0, 1000] 999)
       
    77   defines "\<parallel>f\<parallel>\<hyphen>V \<equiv> \<Squnion>(B V f)"
       
    78 
       
    79 locale normed_vectorspace_with_fn_norm = normed_vectorspace + fn_norm
       
    80 
       
    81 lemma (in fn_norm) B_not_empty [intro]: "0 \<in> B V f"
       
    82   by (simp add: B_def)
       
    83 
       
    84 text {*
       
    85   The following lemma states that every continuous linear form on a
       
    86   normed space @{text "(V, \<parallel>\<cdot>\<parallel>)"} has a function norm.
       
    87 *}
       
    88 
       
    89 lemma (in normed_vectorspace_with_fn_norm) fn_norm_works:
       
    90   assumes "continuous V norm f"
       
    91   shows "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
    92 proof -
       
    93   interpret continuous V norm f by fact
       
    94   txt {* The existence of the supremum is shown using the
       
    95     completeness of the reals. Completeness means, that every
       
    96     non-empty bounded set of reals has a supremum. *}
       
    97   have "\<exists>a. lub (B V f) a"
       
    98   proof (rule real_complete)
       
    99     txt {* First we have to show that @{text B} is non-empty: *}
       
   100     have "0 \<in> B V f" ..
       
   101     then show "\<exists>x. x \<in> B V f" ..
       
   102 
       
   103     txt {* Then we have to show that @{text B} is bounded: *}
       
   104     show "\<exists>c. \<forall>y \<in> B V f. y \<le> c"
       
   105     proof -
       
   106       txt {* We know that @{text f} is bounded by some value @{text c}. *}
       
   107       from bounded obtain c where c: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
       
   108 
       
   109       txt {* To prove the thesis, we have to show that there is some
       
   110         @{text b}, such that @{text "y \<le> b"} for all @{text "y \<in>
       
   111         B"}. Due to the definition of @{text B} there are two cases. *}
       
   112 
       
   113       def b \<equiv> "max c 0"
       
   114       have "\<forall>y \<in> B V f. y \<le> b"
       
   115       proof
       
   116         fix y assume y: "y \<in> B V f"
       
   117         show "y \<le> b"
       
   118         proof cases
       
   119           assume "y = 0"
       
   120           then show ?thesis unfolding b_def by arith
       
   121         next
       
   122           txt {* The second case is @{text "y = \<bar>f x\<bar> / \<parallel>x\<parallel>"} for some
       
   123             @{text "x \<in> V"} with @{text "x \<noteq> 0"}. *}
       
   124           assume "y \<noteq> 0"
       
   125           with y obtain x where y_rep: "y = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
       
   126               and x: "x \<in> V" and neq: "x \<noteq> 0"
       
   127             by (auto simp add: B_def real_divide_def)
       
   128           from x neq have gt: "0 < \<parallel>x\<parallel>" ..
       
   129 
       
   130           txt {* The thesis follows by a short calculation using the
       
   131             fact that @{text f} is bounded. *}
       
   132 
       
   133           note y_rep
       
   134           also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
       
   135           proof (rule mult_right_mono)
       
   136             from c x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
       
   137             from gt have "0 < inverse \<parallel>x\<parallel>" 
       
   138               by (rule positive_imp_inverse_positive)
       
   139             then show "0 \<le> inverse \<parallel>x\<parallel>" by (rule order_less_imp_le)
       
   140           qed
       
   141           also have "\<dots> = c * (\<parallel>x\<parallel> * inverse \<parallel>x\<parallel>)"
       
   142             by (rule real_mult_assoc)
       
   143           also
       
   144           from gt have "\<parallel>x\<parallel> \<noteq> 0" by simp
       
   145           then have "\<parallel>x\<parallel> * inverse \<parallel>x\<parallel> = 1" by simp 
       
   146           also have "c * 1 \<le> b" by (simp add: b_def le_maxI1)
       
   147           finally show "y \<le> b" .
       
   148         qed
       
   149       qed
       
   150       then show ?thesis ..
       
   151     qed
       
   152   qed
       
   153   then show ?thesis unfolding fn_norm_def by (rule the_lubI_ex)
       
   154 qed
       
   155 
       
   156 lemma (in normed_vectorspace_with_fn_norm) fn_norm_ub [iff?]:
       
   157   assumes "continuous V norm f"
       
   158   assumes b: "b \<in> B V f"
       
   159   shows "b \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   160 proof -
       
   161   interpret continuous V norm f by fact
       
   162   have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
   163     using `continuous V norm f` by (rule fn_norm_works)
       
   164   from this and b show ?thesis ..
       
   165 qed
       
   166 
       
   167 lemma (in normed_vectorspace_with_fn_norm) fn_norm_leastB:
       
   168   assumes "continuous V norm f"
       
   169   assumes b: "\<And>b. b \<in> B V f \<Longrightarrow> b \<le> y"
       
   170   shows "\<parallel>f\<parallel>\<hyphen>V \<le> y"
       
   171 proof -
       
   172   interpret continuous V norm f by fact
       
   173   have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
   174     using `continuous V norm f` by (rule fn_norm_works)
       
   175   from this and b show ?thesis ..
       
   176 qed
       
   177 
       
   178 text {* The norm of a continuous function is always @{text "\<ge> 0"}. *}
       
   179 
       
   180 lemma (in normed_vectorspace_with_fn_norm) fn_norm_ge_zero [iff]:
       
   181   assumes "continuous V norm f"
       
   182   shows "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   183 proof -
       
   184   interpret continuous V norm f by fact
       
   185   txt {* The function norm is defined as the supremum of @{text B}.
       
   186     So it is @{text "\<ge> 0"} if all elements in @{text B} are @{text "\<ge>
       
   187     0"}, provided the supremum exists and @{text B} is not empty. *}
       
   188   have "lub (B V f) (\<parallel>f\<parallel>\<hyphen>V)"
       
   189     using `continuous V norm f` by (rule fn_norm_works)
       
   190   moreover have "0 \<in> B V f" ..
       
   191   ultimately show ?thesis ..
       
   192 qed
       
   193 
       
   194 text {*
       
   195   \medskip The fundamental property of function norms is:
       
   196   \begin{center}
       
   197   @{text "\<bar>f x\<bar> \<le> \<parallel>f\<parallel> \<cdot> \<parallel>x\<parallel>"}
       
   198   \end{center}
       
   199 *}
       
   200 
       
   201 lemma (in normed_vectorspace_with_fn_norm) fn_norm_le_cong:
       
   202   assumes "continuous V norm f" "linearform V f"
       
   203   assumes x: "x \<in> V"
       
   204   shows "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
       
   205 proof -
       
   206   interpret continuous V norm f by fact
       
   207   interpret linearform V f by fact
       
   208   show ?thesis
       
   209   proof cases
       
   210     assume "x = 0"
       
   211     then have "\<bar>f x\<bar> = \<bar>f 0\<bar>" by simp
       
   212     also have "f 0 = 0" by rule unfold_locales
       
   213     also have "\<bar>\<dots>\<bar> = 0" by simp
       
   214     also have a: "0 \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   215       using `continuous V norm f` by (rule fn_norm_ge_zero)
       
   216     from x have "0 \<le> norm x" ..
       
   217     with a have "0 \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" by (simp add: zero_le_mult_iff)
       
   218     finally show "\<bar>f x\<bar> \<le> \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>" .
       
   219   next
       
   220     assume "x \<noteq> 0"
       
   221     with x have neq: "\<parallel>x\<parallel> \<noteq> 0" by simp
       
   222     then have "\<bar>f x\<bar> = (\<bar>f x\<bar> * inverse \<parallel>x\<parallel>) * \<parallel>x\<parallel>" by simp
       
   223     also have "\<dots> \<le>  \<parallel>f\<parallel>\<hyphen>V * \<parallel>x\<parallel>"
       
   224     proof (rule mult_right_mono)
       
   225       from x show "0 \<le> \<parallel>x\<parallel>" ..
       
   226       from x and neq have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<in> B V f"
       
   227 	by (auto simp add: B_def real_divide_def)
       
   228       with `continuous V norm f` show "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> \<parallel>f\<parallel>\<hyphen>V"
       
   229 	by (rule fn_norm_ub)
       
   230     qed
       
   231     finally show ?thesis .
       
   232   qed
       
   233 qed
       
   234 
       
   235 text {*
       
   236   \medskip The function norm is the least positive real number for
       
   237   which the following inequation holds:
       
   238   \begin{center}
       
   239     @{text "\<bar>f x\<bar> \<le> c \<cdot> \<parallel>x\<parallel>"}
       
   240   \end{center}
       
   241 *}
       
   242 
       
   243 lemma (in normed_vectorspace_with_fn_norm) fn_norm_least [intro?]:
       
   244   assumes "continuous V norm f"
       
   245   assumes ineq: "\<forall>x \<in> V. \<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" and ge: "0 \<le> c"
       
   246   shows "\<parallel>f\<parallel>\<hyphen>V \<le> c"
       
   247 proof -
       
   248   interpret continuous V norm f by fact
       
   249   show ?thesis
       
   250   proof (rule fn_norm_leastB [folded B_def fn_norm_def])
       
   251     fix b assume b: "b \<in> B V f"
       
   252     show "b \<le> c"
       
   253     proof cases
       
   254       assume "b = 0"
       
   255       with ge show ?thesis by simp
       
   256     next
       
   257       assume "b \<noteq> 0"
       
   258       with b obtain x where b_rep: "b = \<bar>f x\<bar> * inverse \<parallel>x\<parallel>"
       
   259         and x_neq: "x \<noteq> 0" and x: "x \<in> V"
       
   260 	by (auto simp add: B_def real_divide_def)
       
   261       note b_rep
       
   262       also have "\<bar>f x\<bar> * inverse \<parallel>x\<parallel> \<le> (c * \<parallel>x\<parallel>) * inverse \<parallel>x\<parallel>"
       
   263       proof (rule mult_right_mono)
       
   264 	have "0 < \<parallel>x\<parallel>" using x x_neq ..
       
   265 	then show "0 \<le> inverse \<parallel>x\<parallel>" by simp
       
   266 	from ineq and x show "\<bar>f x\<bar> \<le> c * \<parallel>x\<parallel>" ..
       
   267       qed
       
   268       also have "\<dots> = c"
       
   269       proof -
       
   270 	from x_neq and x have "\<parallel>x\<parallel> \<noteq> 0" by simp
       
   271 	then show ?thesis by simp
       
   272       qed
       
   273       finally show ?thesis .
       
   274     qed
       
   275   qed (insert `continuous V norm f`, simp_all add: continuous_def)
       
   276 qed
       
   277 
       
   278 end