src/HOL/Old_Datatype.thy
changeset 58372 bfd497f2f4c2
parent 58371 7f30ec82fe40
child 58373 4bdd00a76e54
equal deleted inserted replaced
58371:7f30ec82fe40 58372:bfd497f2f4c2
     1 (*  Title:      HOL/Old_Datatype.thy
       
     2     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
       
     3     Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
       
     4 *)
       
     5 
       
     6 header {* Old Datatype package: constructing datatypes from Cartesian Products and Disjoint Sums *}
       
     7 
       
     8 theory Old_Datatype
       
     9 imports Power
       
    10 keywords "old_datatype" :: thy_decl
       
    11 begin
       
    12 
       
    13 subsection {* The datatype universe *}
       
    14 
       
    15 definition "Node = {p. EX f x k. p = (f :: nat => 'b + nat, x ::'a + nat) & f k = Inr 0}"
       
    16 
       
    17 typedef ('a, 'b) node = "Node :: ((nat => 'b + nat) * ('a + nat)) set"
       
    18   morphisms Rep_Node Abs_Node
       
    19   unfolding Node_def by auto
       
    20 
       
    21 text{*Datatypes will be represented by sets of type @{text node}*}
       
    22 
       
    23 type_synonym 'a item        = "('a, unit) node set"
       
    24 type_synonym ('a, 'b) dtree = "('a, 'b) node set"
       
    25 
       
    26 consts
       
    27   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
       
    28 
       
    29   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
       
    30   ndepth    :: "('a, 'b) node => nat"
       
    31 
       
    32   Atom      :: "('a + nat) => ('a, 'b) dtree"
       
    33   Leaf      :: "'a => ('a, 'b) dtree"
       
    34   Numb      :: "nat => ('a, 'b) dtree"
       
    35   Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
       
    36   In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
       
    37   In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
       
    38   Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
       
    39 
       
    40   ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
       
    41 
       
    42   uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
       
    43   usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
       
    44 
       
    45   Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
       
    46   Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
       
    47 
       
    48   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
       
    49                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
       
    50   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
       
    51                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
       
    52 
       
    53 
       
    54 defs
       
    55 
       
    56   Push_Node_def:  "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
       
    57 
       
    58   (*crude "lists" of nats -- needed for the constructions*)
       
    59   Push_def:   "Push == (%b h. case_nat b h)"
       
    60 
       
    61   (** operations on S-expressions -- sets of nodes **)
       
    62 
       
    63   (*S-expression constructors*)
       
    64   Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
       
    65   Scons_def:  "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)"
       
    66 
       
    67   (*Leaf nodes, with arbitrary or nat labels*)
       
    68   Leaf_def:   "Leaf == Atom o Inl"
       
    69   Numb_def:   "Numb == Atom o Inr"
       
    70 
       
    71   (*Injections of the "disjoint sum"*)
       
    72   In0_def:    "In0(M) == Scons (Numb 0) M"
       
    73   In1_def:    "In1(M) == Scons (Numb 1) M"
       
    74 
       
    75   (*Function spaces*)
       
    76   Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
       
    77 
       
    78   (*the set of nodes with depth less than k*)
       
    79   ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
       
    80   ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
       
    81 
       
    82   (*products and sums for the "universe"*)
       
    83   uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
       
    84   usum_def:   "usum A B == In0`A Un In1`B"
       
    85 
       
    86   (*the corresponding eliminators*)
       
    87   Split_def:  "Split c M == THE u. EX x y. M = Scons x y & u = c x y"
       
    88 
       
    89   Case_def:   "Case c d M == THE u.  (EX x . M = In0(x) & u = c(x))
       
    90                                   | (EX y . M = In1(y) & u = d(y))"
       
    91 
       
    92 
       
    93   (** equality for the "universe" **)
       
    94 
       
    95   dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
       
    96 
       
    97   dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
       
    98                           (UN (y,y'):s. {(In1(y),In1(y'))})"
       
    99 
       
   100 
       
   101 
       
   102 lemma apfst_convE: 
       
   103     "[| q = apfst f p;  !!x y. [| p = (x,y);  q = (f(x),y) |] ==> R  
       
   104      |] ==> R"
       
   105 by (force simp add: apfst_def)
       
   106 
       
   107 (** Push -- an injection, analogous to Cons on lists **)
       
   108 
       
   109 lemma Push_inject1: "Push i f = Push j g  ==> i=j"
       
   110 apply (simp add: Push_def fun_eq_iff) 
       
   111 apply (drule_tac x=0 in spec, simp) 
       
   112 done
       
   113 
       
   114 lemma Push_inject2: "Push i f = Push j g  ==> f=g"
       
   115 apply (auto simp add: Push_def fun_eq_iff) 
       
   116 apply (drule_tac x="Suc x" in spec, simp) 
       
   117 done
       
   118 
       
   119 lemma Push_inject:
       
   120     "[| Push i f =Push j g;  [| i=j;  f=g |] ==> P |] ==> P"
       
   121 by (blast dest: Push_inject1 Push_inject2) 
       
   122 
       
   123 lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"
       
   124 by (auto simp add: Push_def fun_eq_iff split: nat.split_asm)
       
   125 
       
   126 lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1]
       
   127 
       
   128 
       
   129 (*** Introduction rules for Node ***)
       
   130 
       
   131 lemma Node_K0_I: "(%k. Inr 0, a) : Node"
       
   132 by (simp add: Node_def)
       
   133 
       
   134 lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node"
       
   135 apply (simp add: Node_def Push_def) 
       
   136 apply (fast intro!: apfst_conv nat.case(2)[THEN trans])
       
   137 done
       
   138 
       
   139 
       
   140 subsection{*Freeness: Distinctness of Constructors*}
       
   141 
       
   142 (** Scons vs Atom **)
       
   143 
       
   144 lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)"
       
   145 unfolding Atom_def Scons_def Push_Node_def One_nat_def
       
   146 by (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] 
       
   147          dest!: Abs_Node_inj 
       
   148          elim!: apfst_convE sym [THEN Push_neq_K0])  
       
   149 
       
   150 lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym]
       
   151 
       
   152 
       
   153 (*** Injectiveness ***)
       
   154 
       
   155 (** Atomic nodes **)
       
   156 
       
   157 lemma inj_Atom: "inj(Atom)"
       
   158 apply (simp add: Atom_def)
       
   159 apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj)
       
   160 done
       
   161 lemmas Atom_inject = inj_Atom [THEN injD]
       
   162 
       
   163 lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)"
       
   164 by (blast dest!: Atom_inject)
       
   165 
       
   166 lemma inj_Leaf: "inj(Leaf)"
       
   167 apply (simp add: Leaf_def o_def)
       
   168 apply (rule inj_onI)
       
   169 apply (erule Atom_inject [THEN Inl_inject])
       
   170 done
       
   171 
       
   172 lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD]
       
   173 
       
   174 lemma inj_Numb: "inj(Numb)"
       
   175 apply (simp add: Numb_def o_def)
       
   176 apply (rule inj_onI)
       
   177 apply (erule Atom_inject [THEN Inr_inject])
       
   178 done
       
   179 
       
   180 lemmas Numb_inject [dest!] = inj_Numb [THEN injD]
       
   181 
       
   182 
       
   183 (** Injectiveness of Push_Node **)
       
   184 
       
   185 lemma Push_Node_inject:
       
   186     "[| Push_Node i m =Push_Node j n;  [| i=j;  m=n |] ==> P  
       
   187      |] ==> P"
       
   188 apply (simp add: Push_Node_def)
       
   189 apply (erule Abs_Node_inj [THEN apfst_convE])
       
   190 apply (rule Rep_Node [THEN Node_Push_I])+
       
   191 apply (erule sym [THEN apfst_convE]) 
       
   192 apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject)
       
   193 done
       
   194 
       
   195 
       
   196 (** Injectiveness of Scons **)
       
   197 
       
   198 lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'"
       
   199 unfolding Scons_def One_nat_def
       
   200 by (blast dest!: Push_Node_inject)
       
   201 
       
   202 lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'"
       
   203 unfolding Scons_def One_nat_def
       
   204 by (blast dest!: Push_Node_inject)
       
   205 
       
   206 lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'"
       
   207 apply (erule equalityE)
       
   208 apply (iprover intro: equalityI Scons_inject_lemma1)
       
   209 done
       
   210 
       
   211 lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'"
       
   212 apply (erule equalityE)
       
   213 apply (iprover intro: equalityI Scons_inject_lemma2)
       
   214 done
       
   215 
       
   216 lemma Scons_inject:
       
   217     "[| Scons M N = Scons M' N';  [| M=M';  N=N' |] ==> P |] ==> P"
       
   218 by (iprover dest: Scons_inject1 Scons_inject2)
       
   219 
       
   220 lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')"
       
   221 by (blast elim!: Scons_inject)
       
   222 
       
   223 (*** Distinctness involving Leaf and Numb ***)
       
   224 
       
   225 (** Scons vs Leaf **)
       
   226 
       
   227 lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)"
       
   228 unfolding Leaf_def o_def by (rule Scons_not_Atom)
       
   229 
       
   230 lemmas Leaf_not_Scons  [iff] = Scons_not_Leaf [THEN not_sym]
       
   231 
       
   232 (** Scons vs Numb **)
       
   233 
       
   234 lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)"
       
   235 unfolding Numb_def o_def by (rule Scons_not_Atom)
       
   236 
       
   237 lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym]
       
   238 
       
   239 
       
   240 (** Leaf vs Numb **)
       
   241 
       
   242 lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)"
       
   243 by (simp add: Leaf_def Numb_def)
       
   244 
       
   245 lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym]
       
   246 
       
   247 
       
   248 (*** ndepth -- the depth of a node ***)
       
   249 
       
   250 lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0"
       
   251 by (simp add: ndepth_def  Node_K0_I [THEN Abs_Node_inverse] Least_equality)
       
   252 
       
   253 lemma ndepth_Push_Node_aux:
       
   254      "case_nat (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k"
       
   255 apply (induct_tac "k", auto)
       
   256 apply (erule Least_le)
       
   257 done
       
   258 
       
   259 lemma ndepth_Push_Node: 
       
   260     "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))"
       
   261 apply (insert Rep_Node [of n, unfolded Node_def])
       
   262 apply (auto simp add: ndepth_def Push_Node_def
       
   263                  Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse])
       
   264 apply (rule Least_equality)
       
   265 apply (auto simp add: Push_def ndepth_Push_Node_aux)
       
   266 apply (erule LeastI)
       
   267 done
       
   268 
       
   269 
       
   270 (*** ntrunc applied to the various node sets ***)
       
   271 
       
   272 lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
       
   273 by (simp add: ntrunc_def)
       
   274 
       
   275 lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)"
       
   276 by (auto simp add: Atom_def ntrunc_def ndepth_K0)
       
   277 
       
   278 lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)"
       
   279 unfolding Leaf_def o_def by (rule ntrunc_Atom)
       
   280 
       
   281 lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)"
       
   282 unfolding Numb_def o_def by (rule ntrunc_Atom)
       
   283 
       
   284 lemma ntrunc_Scons [simp]: 
       
   285     "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)"
       
   286 unfolding Scons_def ntrunc_def One_nat_def
       
   287 by (auto simp add: ndepth_Push_Node)
       
   288 
       
   289 
       
   290 
       
   291 (** Injection nodes **)
       
   292 
       
   293 lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
       
   294 apply (simp add: In0_def)
       
   295 apply (simp add: Scons_def)
       
   296 done
       
   297 
       
   298 lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)"
       
   299 by (simp add: In0_def)
       
   300 
       
   301 lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
       
   302 apply (simp add: In1_def)
       
   303 apply (simp add: Scons_def)
       
   304 done
       
   305 
       
   306 lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)"
       
   307 by (simp add: In1_def)
       
   308 
       
   309 
       
   310 subsection{*Set Constructions*}
       
   311 
       
   312 
       
   313 (*** Cartesian Product ***)
       
   314 
       
   315 lemma uprodI [intro!]: "[| M:A;  N:B |] ==> Scons M N : uprod A B"
       
   316 by (simp add: uprod_def)
       
   317 
       
   318 (*The general elimination rule*)
       
   319 lemma uprodE [elim!]:
       
   320     "[| c : uprod A B;   
       
   321         !!x y. [| x:A;  y:B;  c = Scons x y |] ==> P  
       
   322      |] ==> P"
       
   323 by (auto simp add: uprod_def) 
       
   324 
       
   325 
       
   326 (*Elimination of a pair -- introduces no eigenvariables*)
       
   327 lemma uprodE2: "[| Scons M N : uprod A B;  [| M:A;  N:B |] ==> P |] ==> P"
       
   328 by (auto simp add: uprod_def)
       
   329 
       
   330 
       
   331 (*** Disjoint Sum ***)
       
   332 
       
   333 lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B"
       
   334 by (simp add: usum_def)
       
   335 
       
   336 lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B"
       
   337 by (simp add: usum_def)
       
   338 
       
   339 lemma usumE [elim!]: 
       
   340     "[| u : usum A B;   
       
   341         !!x. [| x:A;  u=In0(x) |] ==> P;  
       
   342         !!y. [| y:B;  u=In1(y) |] ==> P  
       
   343      |] ==> P"
       
   344 by (auto simp add: usum_def)
       
   345 
       
   346 
       
   347 (** Injection **)
       
   348 
       
   349 lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)"
       
   350 unfolding In0_def In1_def One_nat_def by auto
       
   351 
       
   352 lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym]
       
   353 
       
   354 lemma In0_inject: "In0(M) = In0(N) ==>  M=N"
       
   355 by (simp add: In0_def)
       
   356 
       
   357 lemma In1_inject: "In1(M) = In1(N) ==>  M=N"
       
   358 by (simp add: In1_def)
       
   359 
       
   360 lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)"
       
   361 by (blast dest!: In0_inject)
       
   362 
       
   363 lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)"
       
   364 by (blast dest!: In1_inject)
       
   365 
       
   366 lemma inj_In0: "inj In0"
       
   367 by (blast intro!: inj_onI)
       
   368 
       
   369 lemma inj_In1: "inj In1"
       
   370 by (blast intro!: inj_onI)
       
   371 
       
   372 
       
   373 (*** Function spaces ***)
       
   374 
       
   375 lemma Lim_inject: "Lim f = Lim g ==> f = g"
       
   376 apply (simp add: Lim_def)
       
   377 apply (rule ext)
       
   378 apply (blast elim!: Push_Node_inject)
       
   379 done
       
   380 
       
   381 
       
   382 (*** proving equality of sets and functions using ntrunc ***)
       
   383 
       
   384 lemma ntrunc_subsetI: "ntrunc k M <= M"
       
   385 by (auto simp add: ntrunc_def)
       
   386 
       
   387 lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N"
       
   388 by (auto simp add: ntrunc_def)
       
   389 
       
   390 (*A generalized form of the take-lemma*)
       
   391 lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N"
       
   392 apply (rule equalityI)
       
   393 apply (rule_tac [!] ntrunc_subsetD)
       
   394 apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) 
       
   395 done
       
   396 
       
   397 lemma ntrunc_o_equality: 
       
   398     "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"
       
   399 apply (rule ntrunc_equality [THEN ext])
       
   400 apply (simp add: fun_eq_iff) 
       
   401 done
       
   402 
       
   403 
       
   404 (*** Monotonicity ***)
       
   405 
       
   406 lemma uprod_mono: "[| A<=A';  B<=B' |] ==> uprod A B <= uprod A' B'"
       
   407 by (simp add: uprod_def, blast)
       
   408 
       
   409 lemma usum_mono: "[| A<=A';  B<=B' |] ==> usum A B <= usum A' B'"
       
   410 by (simp add: usum_def, blast)
       
   411 
       
   412 lemma Scons_mono: "[| M<=M';  N<=N' |] ==> Scons M N <= Scons M' N'"
       
   413 by (simp add: Scons_def, blast)
       
   414 
       
   415 lemma In0_mono: "M<=N ==> In0(M) <= In0(N)"
       
   416 by (simp add: In0_def Scons_mono)
       
   417 
       
   418 lemma In1_mono: "M<=N ==> In1(M) <= In1(N)"
       
   419 by (simp add: In1_def Scons_mono)
       
   420 
       
   421 
       
   422 (*** Split and Case ***)
       
   423 
       
   424 lemma Split [simp]: "Split c (Scons M N) = c M N"
       
   425 by (simp add: Split_def)
       
   426 
       
   427 lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)"
       
   428 by (simp add: Case_def)
       
   429 
       
   430 lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)"
       
   431 by (simp add: Case_def)
       
   432 
       
   433 
       
   434 
       
   435 (**** UN x. B(x) rules ****)
       
   436 
       
   437 lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))"
       
   438 by (simp add: ntrunc_def, blast)
       
   439 
       
   440 lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)"
       
   441 by (simp add: Scons_def, blast)
       
   442 
       
   443 lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))"
       
   444 by (simp add: Scons_def, blast)
       
   445 
       
   446 lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))"
       
   447 by (simp add: In0_def Scons_UN1_y)
       
   448 
       
   449 lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))"
       
   450 by (simp add: In1_def Scons_UN1_y)
       
   451 
       
   452 
       
   453 (*** Equality for Cartesian Product ***)
       
   454 
       
   455 lemma dprodI [intro!]: 
       
   456     "[| (M,M'):r;  (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s"
       
   457 by (auto simp add: dprod_def)
       
   458 
       
   459 (*The general elimination rule*)
       
   460 lemma dprodE [elim!]: 
       
   461     "[| c : dprod r s;   
       
   462         !!x y x' y'. [| (x,x') : r;  (y,y') : s;  
       
   463                         c = (Scons x y, Scons x' y') |] ==> P  
       
   464      |] ==> P"
       
   465 by (auto simp add: dprod_def)
       
   466 
       
   467 
       
   468 (*** Equality for Disjoint Sum ***)
       
   469 
       
   470 lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s"
       
   471 by (auto simp add: dsum_def)
       
   472 
       
   473 lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s"
       
   474 by (auto simp add: dsum_def)
       
   475 
       
   476 lemma dsumE [elim!]: 
       
   477     "[| w : dsum r s;   
       
   478         !!x x'. [| (x,x') : r;  w = (In0(x), In0(x')) |] ==> P;  
       
   479         !!y y'. [| (y,y') : s;  w = (In1(y), In1(y')) |] ==> P  
       
   480      |] ==> P"
       
   481 by (auto simp add: dsum_def)
       
   482 
       
   483 
       
   484 (*** Monotonicity ***)
       
   485 
       
   486 lemma dprod_mono: "[| r<=r';  s<=s' |] ==> dprod r s <= dprod r' s'"
       
   487 by blast
       
   488 
       
   489 lemma dsum_mono: "[| r<=r';  s<=s' |] ==> dsum r s <= dsum r' s'"
       
   490 by blast
       
   491 
       
   492 
       
   493 (*** Bounding theorems ***)
       
   494 
       
   495 lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)"
       
   496 by blast
       
   497 
       
   498 lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma]
       
   499 
       
   500 (*Dependent version*)
       
   501 lemma dprod_subset_Sigma2:
       
   502     "(dprod (Sigma A B) (Sigma C D)) <= Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))"
       
   503 by auto
       
   504 
       
   505 lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)"
       
   506 by blast
       
   507 
       
   508 lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma]
       
   509 
       
   510 
       
   511 (*** Domain theorems ***)
       
   512 
       
   513 lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
       
   514   by auto
       
   515 
       
   516 lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
       
   517   by auto
       
   518 
       
   519 
       
   520 text {* hides popular names *}
       
   521 hide_type (open) node item
       
   522 hide_const (open) Push Node Atom Leaf Numb Lim Split Case
       
   523 
       
   524 ML_file "Tools/Old_Datatype/old_datatype.ML"
       
   525 
       
   526 ML_file "Tools/inductive_realizer.ML"
       
   527 setup InductiveRealizer.setup
       
   528 
       
   529 end