625 from this topological_tendstoD [OF f A] |
625 from this topological_tendstoD [OF f A] |
626 show "eventually (\<lambda>x. g (f x) \<in> B) F" |
626 show "eventually (\<lambda>x. g (f x) \<in> B) F" |
627 by (rule eventually_mono) |
627 by (rule eventually_mono) |
628 qed |
628 qed |
629 |
629 |
|
630 lemma tendsto_compose_eventually: |
|
631 assumes g: "(g ---> m) (at l)" |
|
632 assumes f: "(f ---> l) F" |
|
633 assumes inj: "eventually (\<lambda>x. f x \<noteq> l) F" |
|
634 shows "((\<lambda>x. g (f x)) ---> m) F" |
|
635 proof (rule topological_tendstoI) |
|
636 fix B assume B: "open B" "m \<in> B" |
|
637 obtain A where A: "open A" "l \<in> A" |
|
638 and gB: "\<And>y. y \<in> A \<Longrightarrow> y \<noteq> l \<Longrightarrow> g y \<in> B" |
|
639 using topological_tendstoD [OF g B] |
|
640 unfolding eventually_at_topological by fast |
|
641 show "eventually (\<lambda>x. g (f x) \<in> B) F" |
|
642 using topological_tendstoD [OF f A] inj |
|
643 by (rule eventually_elim2) (simp add: gB) |
|
644 qed |
|
645 |
630 lemma metric_tendsto_imp_tendsto: |
646 lemma metric_tendsto_imp_tendsto: |
631 assumes f: "(f ---> a) F" |
647 assumes f: "(f ---> a) F" |
632 assumes le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F" |
648 assumes le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F" |
633 shows "(g ---> b) F" |
649 shows "(g ---> b) F" |
634 proof (rule tendstoI) |
650 proof (rule tendstoI) |