src/HOL/Limits.thy
changeset 44253 c073a0bd8458
parent 44251 d101ed3177b6
child 44282 f0de18b62d63
equal deleted inserted replaced
44252:10362a07eb7c 44253:c073a0bd8458
   625   from this topological_tendstoD [OF f A]
   625   from this topological_tendstoD [OF f A]
   626   show "eventually (\<lambda>x. g (f x) \<in> B) F"
   626   show "eventually (\<lambda>x. g (f x) \<in> B) F"
   627     by (rule eventually_mono)
   627     by (rule eventually_mono)
   628 qed
   628 qed
   629 
   629 
       
   630 lemma tendsto_compose_eventually:
       
   631   assumes g: "(g ---> m) (at l)"
       
   632   assumes f: "(f ---> l) F"
       
   633   assumes inj: "eventually (\<lambda>x. f x \<noteq> l) F"
       
   634   shows "((\<lambda>x. g (f x)) ---> m) F"
       
   635 proof (rule topological_tendstoI)
       
   636   fix B assume B: "open B" "m \<in> B"
       
   637   obtain A where A: "open A" "l \<in> A"
       
   638     and gB: "\<And>y. y \<in> A \<Longrightarrow> y \<noteq> l \<Longrightarrow> g y \<in> B"
       
   639     using topological_tendstoD [OF g B]
       
   640     unfolding eventually_at_topological by fast
       
   641   show "eventually (\<lambda>x. g (f x) \<in> B) F"
       
   642     using topological_tendstoD [OF f A] inj
       
   643     by (rule eventually_elim2) (simp add: gB)
       
   644 qed
       
   645 
   630 lemma metric_tendsto_imp_tendsto:
   646 lemma metric_tendsto_imp_tendsto:
   631   assumes f: "(f ---> a) F"
   647   assumes f: "(f ---> a) F"
   632   assumes le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F"
   648   assumes le: "eventually (\<lambda>x. dist (g x) b \<le> dist (f x) a) F"
   633   shows "(g ---> b) F"
   649   shows "(g ---> b) F"
   634 proof (rule tendstoI)
   650 proof (rule tendstoI)