src/HOL/Real/HahnBanach/Aux.thy
changeset 10687 c186279eecea
parent 10606 e3229a37d53f
child 10752 c4f1bf2acf4c
equal deleted inserted replaced
10686:60c795d6bd9e 10687:c186279eecea
     9 
     9 
    10 text {* Some existing theorems are declared as extra introduction
    10 text {* Some existing theorems are declared as extra introduction
    11 or elimination rules, respectively. *}
    11 or elimination rules, respectively. *}
    12 
    12 
    13 lemmas [intro?] = isLub_isUb
    13 lemmas [intro?] = isLub_isUb
    14 lemmas [intro?] = chainD 
    14 lemmas [intro?] = chainD
    15 lemmas chainE2 = chainD2 [elim_format, standard]
    15 lemmas chainE2 = chainD2 [elim_format, standard]
    16 
    16 
    17 text_raw {* \medskip *}
       
    18 text{* Lemmas about sets. *}
       
    19 
    17 
    20 lemma Int_singletonD: "[| A \<inter> B = {v}; x \<in> A; x \<in> B |] ==> x = v"
    18 text {* \medskip Lemmas about sets. *}
       
    19 
       
    20 lemma Int_singletonD: "A \<inter> B = {v} \<Longrightarrow> x \<in> A \<Longrightarrow> x \<in> B \<Longrightarrow> x = v"
    21   by (fast elim: equalityE)
    21   by (fast elim: equalityE)
    22 
    22 
    23 lemma set_less_imp_diff_not_empty: "H < E ==> \<exists>x0 \<in> E. x0 \<notin> H"
    23 lemma set_less_imp_diff_not_empty: "H < E \<Longrightarrow> \<exists>x0 \<in> E. x0 \<notin> H"
    24   by (force simp add: psubset_eq)
    24   by (auto simp add: psubset_eq)
    25 
    25 
    26 text_raw {* \medskip *}
       
    27 text{* Some lemmas about orders. *}
       
    28 
    26 
    29 lemma lt_imp_not_eq: "x < (y::'a::order) ==> x \<noteq> y"
    27 text{* \medskip Some lemmas about orders. *}
       
    28 
       
    29 lemma lt_imp_not_eq: "x < (y::'a::order) \<Longrightarrow> x \<noteq> y"
    30   by (simp add: order_less_le)
    30   by (simp add: order_less_le)
    31 
    31 
    32 lemma le_noteq_imp_less: 
    32 lemma le_noteq_imp_less:
    33   "[| x <= (r::'a::order); x \<noteq> r |] ==> x < r"
    33   "x \<le> (r::'a::order) \<Longrightarrow> x \<noteq> r \<Longrightarrow> x < r"
    34 proof -
    34 proof -
    35   assume "x <= r" and ne:"x \<noteq> r"
    35   assume "x \<le> r" and ne:"x \<noteq> r"
    36   hence "x < r | x = r" by (simp add: order_le_less)
    36   hence "x < r \<or> x = r" by (simp add: order_le_less)
    37   with ne show ?thesis by simp
    37   with ne show ?thesis by simp
    38 qed
    38 qed
    39 
    39 
    40 text_raw {* \medskip *}
       
    41 text{* Some lemmas for the reals. *}
       
    42 
    40 
    43 lemma real_add_minus_eq: "x - y = (#0::real) ==> x = y"
    41 text {* \medskip Some lemmas for the reals. *}
       
    42 
       
    43 lemma real_add_minus_eq: "x - y = (#0::real) \<Longrightarrow> x = y"
    44   by simp
    44   by simp
    45 
    45 
    46 lemma abs_minus_one: "abs (- (#1::real)) = #1" 
    46 lemma abs_minus_one: "abs (- (#1::real)) = #1"
    47   by simp
    47   by simp
    48 
    48 
    49 lemma real_mult_le_le_mono1a: 
    49 lemma real_mult_le_le_mono1a:
    50   "[| (#0::real) <= z; x <= y |] ==> z * x  <= z * y"
    50   "(#0::real) \<le> z \<Longrightarrow> x \<le> y \<Longrightarrow> z * x  \<le> z * y"
    51 proof -
    51 proof -
    52   assume z: "(#0::real) <= z" and "x <= y"
    52   assume z: "(#0::real) \<le> z" and "x \<le> y"
    53   hence "x < y | x = y" by (force simp add: order_le_less)
    53   hence "x < y \<or> x = y" by (auto simp add: order_le_less)
    54   thus ?thesis
    54   thus ?thesis
    55   proof (elim disjE) 
    55   proof
    56     assume "x < y" show ?thesis by  (rule real_mult_le_less_mono2) simp
    56     assume "x < y" show ?thesis by  (rule real_mult_le_less_mono2) simp
    57   next 
    57   next
    58     assume "x = y" thus ?thesis by simp
    58     assume "x = y" thus ?thesis by simp
    59   qed
    59   qed
    60 qed
    60 qed
    61 
    61 
    62 lemma real_mult_le_le_mono2: 
    62 lemma real_mult_le_le_mono2:
    63   "[| (#0::real) <= z; x <= y |] ==> x * z <= y * z"
    63   "(#0::real) \<le> z \<Longrightarrow> x \<le> y \<Longrightarrow> x * z \<le> y * z"
    64 proof -
    64 proof -
    65   assume "(#0::real) <= z" "x <= y"
    65   assume "(#0::real) \<le> z"  "x \<le> y"
    66   hence "x < y | x = y" by (force simp add: order_le_less)
    66   hence "x < y \<or> x = y" by (auto simp add: order_le_less)
    67   thus ?thesis
    67   thus ?thesis
    68   proof (elim disjE) 
    68   proof
    69     assume "x < y" show ?thesis by (rule real_mult_le_less_mono1) simp
    69     assume "x < y"
    70   next 
    70     show ?thesis by (rule real_mult_le_less_mono1) (simp!)
    71     assume "x = y" thus ?thesis by simp
    71   next
       
    72     assume "x = y"
       
    73     thus ?thesis by simp
    72   qed
    74   qed
    73 qed
    75 qed
    74 
    76 
    75 lemma real_mult_less_le_anti: 
    77 lemma real_mult_less_le_anti:
    76   "[| z < (#0::real); x <= y |] ==> z * y <= z * x"
    78   "z < (#0::real) \<Longrightarrow> x \<le> y \<Longrightarrow> z * y \<le> z * x"
    77 proof -
    79 proof -
    78   assume "z < #0" "x <= y"
    80   assume "z < #0"  "x \<le> y"
    79   hence "#0 < - z" by simp
    81   hence "#0 < - z" by simp
    80   hence "#0 <= - z" by (rule real_less_imp_le)
    82   hence "#0 \<le> - z" by (rule real_less_imp_le)
    81   hence "x * (- z) <= y * (- z)" 
    83   hence "x * (- z) \<le> y * (- z)"
    82     by (rule real_mult_le_le_mono2)
    84     by (rule real_mult_le_le_mono2)
    83   hence  "- (x * z) <= - (y * z)" 
    85   hence  "- (x * z) \<le> - (y * z)"
    84     by (simp only: real_minus_mult_eq2)
    86     by (simp only: real_minus_mult_eq2)
    85   thus ?thesis by (simp only: real_mult_commute)
    87   thus ?thesis by (simp only: real_mult_commute)
    86 qed
    88 qed
    87 
    89 
    88 lemma real_mult_less_le_mono: 
    90 lemma real_mult_less_le_mono:
    89   "[| (#0::real) < z; x <= y |] ==> z * x <= z * y"
    91   "(#0::real) < z \<Longrightarrow> x \<le> y \<Longrightarrow> z * x \<le> z * y"
    90 proof - 
    92 proof -
    91   assume "#0 < z" "x <= y"
    93   assume "#0 < z"  "x \<le> y"
    92   have "#0 <= z" by (rule real_less_imp_le)
    94   have "#0 \<le> z" by (rule real_less_imp_le)
    93   hence "x * z <= y * z" 
    95   hence "x * z \<le> y * z"
    94     by (rule real_mult_le_le_mono2)
    96     by (rule real_mult_le_le_mono2)
    95   thus ?thesis by (simp only: real_mult_commute)
    97   thus ?thesis by (simp only: real_mult_commute)
    96 qed
    98 qed
    97 
    99 
    98 lemma real_inverse_gt_zero1: "#0 < (x::real) ==> #0 < inverse x"
   100 lemma real_inverse_gt_zero1: "#0 < (x::real) \<Longrightarrow> #0 < inverse x"
    99 proof - 
   101 proof -
   100   assume "#0 < x"
   102   assume "#0 < x"
   101   have "0 < x" by simp
   103   have "0 < x" by simp
   102   hence "0 < inverse x" by (rule real_inverse_gt_zero)
   104   hence "0 < inverse x" by (rule real_inverse_gt_zero)
   103   thus ?thesis by simp
   105   thus ?thesis by simp
   104 qed
   106 qed
   105 
   107 
   106 lemma real_mult_inv_right1: "(x::real) \<noteq> #0 ==> x * inverse x = #1"
   108 lemma real_mult_inv_right1: "(x::real) \<noteq> #0 \<Longrightarrow> x * inverse x = #1"
   107   by simp
   109   by simp
   108 
   110 
   109 lemma real_mult_inv_left1: "(x::real) \<noteq> #0 ==> inverse x * x = #1"
   111 lemma real_mult_inv_left1: "(x::real) \<noteq> #0 \<Longrightarrow> inverse x * x = #1"
   110   by simp
   112   by simp
   111 
   113 
   112 lemma real_le_mult_order1a: 
   114 lemma real_le_mult_order1a:
   113   "[| (#0::real) <= x; #0 <= y |] ==> #0 <= x * y"
   115   "(#0::real) \<le> x \<Longrightarrow> #0 \<le> y \<Longrightarrow> #0 \<le> x * y"
   114 proof -
   116 proof -
   115   assume "#0 <= x" "#0 <= y"
   117   assume "#0 \<le> x"  "#0 \<le> y"
   116   have "[|0 <= x; 0 <= y|] ==> 0 <= x * y"  
   118   have "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x * y"
   117     by (rule real_le_mult_order)
   119     by (rule real_le_mult_order)
   118   thus ?thesis by (simp!)
   120   thus ?thesis by (simp!)
   119 qed
   121 qed
   120 
   122 
   121 lemma real_mult_diff_distrib: 
   123 lemma real_mult_diff_distrib:
   122   "a * (- x - (y::real)) = - a * x - a * y"
   124   "a * (- x - (y::real)) = - a * x - a * y"
   123 proof -
   125 proof -
   124   have "- x - y = - x + - y" by simp
   126   have "- x - y = - x + - y" by simp
   125   also have "a * ... = a * - x + a * - y" 
   127   also have "a * ... = a * - x + a * - y"
   126     by (simp only: real_add_mult_distrib2)
   128     by (simp only: real_add_mult_distrib2)
   127   also have "... = - a * x - a * y" 
   129   also have "... = - a * x - a * y"
   128     by simp
   130     by simp
   129   finally show ?thesis .
   131   finally show ?thesis .
   130 qed
   132 qed
   131 
   133 
   132 lemma real_mult_diff_distrib2: "a * (x - (y::real)) = a * x - a * y"
   134 lemma real_mult_diff_distrib2: "a * (x - (y::real)) = a * x - a * y"
   133 proof - 
   135 proof -
   134   have "x - y = x + - y" by simp
   136   have "x - y = x + - y" by simp
   135   also have "a * ... = a * x + a * - y" 
   137   also have "a * ... = a * x + a * - y"
   136     by (simp only: real_add_mult_distrib2)
   138     by (simp only: real_add_mult_distrib2)
   137   also have "... = a * x - a * y"   
   139   also have "... = a * x - a * y"
   138     by simp
   140     by simp
   139   finally show ?thesis .
   141   finally show ?thesis .
   140 qed
   142 qed
   141 
   143 
   142 lemma real_minus_le: "- (x::real) <= y ==> - y <= x"
   144 lemma real_minus_le: "- (x::real) \<le> y \<Longrightarrow> - y \<le> x"
   143   by simp
   145   by simp
   144 
   146 
   145 lemma real_diff_ineq_swap: 
   147 lemma real_diff_ineq_swap:
   146     "(d::real) - b <= c + a ==> - a - b <= c - d"
   148     "(d::real) - b \<le> c + a \<Longrightarrow> - a - b \<le> c - d"
   147   by simp
   149   by simp
   148 
   150 
   149 end
   151 end