src/HOL/Library/Bit.thy
changeset 63462 c1fe30f2bc32
parent 60679 ade12ef2773c
child 69593 3dda49e08b9d
equal deleted inserted replaced
63461:f10feaa9b14a 63462:c1fe30f2bc32
     9 begin
     9 begin
    10 
    10 
    11 subsection \<open>Bits as a datatype\<close>
    11 subsection \<open>Bits as a datatype\<close>
    12 
    12 
    13 typedef bit = "UNIV :: bool set"
    13 typedef bit = "UNIV :: bool set"
    14   morphisms set Bit
    14   morphisms set Bit ..
    15   ..
       
    16 
    15 
    17 instantiation bit :: "{zero, one}"
    16 instantiation bit :: "{zero, one}"
    18 begin
    17 begin
    19 
    18 
    20 definition zero_bit_def:
    19 definition zero_bit_def: "0 = Bit False"
    21   "0 = Bit False"
       
    22 
    20 
    23 definition one_bit_def:
    21 definition one_bit_def: "1 = Bit True"
    24   "1 = Bit True"
       
    25 
    22 
    26 instance ..
    23 instance ..
    27 
    24 
    28 end
    25 end
    29 
    26 
    30 old_rep_datatype "0::bit" "1::bit"
    27 old_rep_datatype "0::bit" "1::bit"
    31 proof -
    28 proof -
    32   fix P and x :: bit
    29   fix P :: "bit \<Rightarrow> bool"
    33   assume "P (0::bit)" and "P (1::bit)"
    30   fix x :: bit
       
    31   assume "P 0" and "P 1"
    34   then have "\<forall>b. P (Bit b)"
    32   then have "\<forall>b. P (Bit b)"
    35     unfolding zero_bit_def one_bit_def
    33     unfolding zero_bit_def one_bit_def
    36     by (simp add: all_bool_eq)
    34     by (simp add: all_bool_eq)
    37   then show "P x"
    35   then show "P x"
    38     by (induct x) simp
    36     by (induct x) simp
    40   show "(0::bit) \<noteq> (1::bit)"
    38   show "(0::bit) \<noteq> (1::bit)"
    41     unfolding zero_bit_def one_bit_def
    39     unfolding zero_bit_def one_bit_def
    42     by (simp add: Bit_inject)
    40     by (simp add: Bit_inject)
    43 qed
    41 qed
    44 
    42 
    45 lemma Bit_set_eq [simp]:
    43 lemma Bit_set_eq [simp]: "Bit (set b) = b"
    46   "Bit (set b) = b"
       
    47   by (fact set_inverse)
    44   by (fact set_inverse)
    48   
    45 
    49 lemma set_Bit_eq [simp]:
    46 lemma set_Bit_eq [simp]: "set (Bit P) = P"
    50   "set (Bit P) = P"
       
    51   by (rule Bit_inverse) rule
    47   by (rule Bit_inverse) rule
    52 
    48 
    53 lemma bit_eq_iff:
    49 lemma bit_eq_iff: "x = y \<longleftrightarrow> (set x \<longleftrightarrow> set y)"
    54   "x = y \<longleftrightarrow> (set x \<longleftrightarrow> set y)"
       
    55   by (auto simp add: set_inject)
    50   by (auto simp add: set_inject)
    56 
    51 
    57 lemma Bit_inject [simp]:
    52 lemma Bit_inject [simp]: "Bit P = Bit Q \<longleftrightarrow> (P \<longleftrightarrow> Q)"
    58   "Bit P = Bit Q \<longleftrightarrow> (P \<longleftrightarrow> Q)"
    53   by (auto simp add: Bit_inject)
    59   by (auto simp add: Bit_inject)  
       
    60 
    54 
    61 lemma set [iff]:
    55 lemma set [iff]:
    62   "\<not> set 0"
    56   "\<not> set 0"
    63   "set 1"
    57   "set 1"
    64   by (simp_all add: zero_bit_def one_bit_def Bit_inverse)
    58   by (simp_all add: zero_bit_def one_bit_def Bit_inverse)
    66 lemma [code]:
    60 lemma [code]:
    67   "set 0 \<longleftrightarrow> False"
    61   "set 0 \<longleftrightarrow> False"
    68   "set 1 \<longleftrightarrow> True"
    62   "set 1 \<longleftrightarrow> True"
    69   by simp_all
    63   by simp_all
    70 
    64 
    71 lemma set_iff:
    65 lemma set_iff: "set b \<longleftrightarrow> b = 1"
    72   "set b \<longleftrightarrow> b = 1"
       
    73   by (cases b) simp_all
    66   by (cases b) simp_all
    74 
    67 
    75 lemma bit_eq_iff_set:
    68 lemma bit_eq_iff_set:
    76   "b = 0 \<longleftrightarrow> \<not> set b"
    69   "b = 0 \<longleftrightarrow> \<not> set b"
    77   "b = 1 \<longleftrightarrow> set b"
    70   "b = 1 \<longleftrightarrow> set b"
    80 lemma Bit [simp, code]:
    73 lemma Bit [simp, code]:
    81   "Bit False = 0"
    74   "Bit False = 0"
    82   "Bit True = 1"
    75   "Bit True = 1"
    83   by (simp_all add: zero_bit_def one_bit_def)
    76   by (simp_all add: zero_bit_def one_bit_def)
    84 
    77 
    85 lemma bit_not_0_iff [iff]:
    78 lemma bit_not_0_iff [iff]: "x \<noteq> 0 \<longleftrightarrow> x = 1" for x :: bit
    86   "(x::bit) \<noteq> 0 \<longleftrightarrow> x = 1"
       
    87   by (simp add: bit_eq_iff)
    79   by (simp add: bit_eq_iff)
    88 
    80 
    89 lemma bit_not_1_iff [iff]:
    81 lemma bit_not_1_iff [iff]: "x \<noteq> 1 \<longleftrightarrow> x = 0" for x :: bit
    90   "(x::bit) \<noteq> 1 \<longleftrightarrow> x = 0"
       
    91   by (simp add: bit_eq_iff)
    82   by (simp add: bit_eq_iff)
    92 
    83 
    93 lemma [code]:
    84 lemma [code]:
    94   "HOL.equal 0 b \<longleftrightarrow> \<not> set b"
    85   "HOL.equal 0 b \<longleftrightarrow> \<not> set b"
    95   "HOL.equal 1 b \<longleftrightarrow> set b"
    86   "HOL.equal 1 b \<longleftrightarrow> set b"
    96   by (simp_all add: equal set_iff)  
    87   by (simp_all add: equal set_iff)
    97 
    88 
    98   
    89 
    99 subsection \<open>Type @{typ bit} forms a field\<close>
    90 subsection \<open>Type @{typ bit} forms a field\<close>
   100 
    91 
   101 instantiation bit :: field
    92 instantiation bit :: field
   102 begin
    93 begin
   103 
    94 
   104 definition plus_bit_def:
    95 definition plus_bit_def: "x + y = case_bit y (case_bit 1 0 y) x"
   105   "x + y = case_bit y (case_bit 1 0 y) x"
       
   106 
    96 
   107 definition times_bit_def:
    97 definition times_bit_def: "x * y = case_bit 0 y x"
   108   "x * y = case_bit 0 y x"
       
   109 
    98 
   110 definition uminus_bit_def [simp]:
    99 definition uminus_bit_def [simp]: "- x = x" for x :: bit
   111   "- x = (x :: bit)"
       
   112 
   100 
   113 definition minus_bit_def [simp]:
   101 definition minus_bit_def [simp]: "x - y = x + y" for x y :: bit
   114   "x - y = (x + y :: bit)"
       
   115 
   102 
   116 definition inverse_bit_def [simp]:
   103 definition inverse_bit_def [simp]: "inverse x = x" for x :: bit
   117   "inverse x = (x :: bit)"
       
   118 
   104 
   119 definition divide_bit_def [simp]:
   105 definition divide_bit_def [simp]: "x div y = x * y" for x y :: bit
   120   "x div y = (x * y :: bit)"
       
   121 
   106 
   122 lemmas field_bit_defs =
   107 lemmas field_bit_defs =
   123   plus_bit_def times_bit_def minus_bit_def uminus_bit_def
   108   plus_bit_def times_bit_def minus_bit_def uminus_bit_def
   124   divide_bit_def inverse_bit_def
   109   divide_bit_def inverse_bit_def
   125 
   110 
   126 instance
   111 instance
   127   by standard (auto simp: field_bit_defs split: bit.split)
   112   by standard (auto simp: field_bit_defs split: bit.split)
   128 
   113 
   129 end
   114 end
   130 
   115 
   131 lemma bit_add_self: "x + x = (0 :: bit)"
   116 lemma bit_add_self: "x + x = 0" for x :: bit
   132   unfolding plus_bit_def by (simp split: bit.split)
   117   unfolding plus_bit_def by (simp split: bit.split)
   133 
   118 
   134 lemma bit_mult_eq_1_iff [simp]: "x * y = (1 :: bit) \<longleftrightarrow> x = 1 \<and> y = 1"
   119 lemma bit_mult_eq_1_iff [simp]: "x * y = 1 \<longleftrightarrow> x = 1 \<and> y = 1" for x y :: bit
   135   unfolding times_bit_def by (simp split: bit.split)
   120   unfolding times_bit_def by (simp split: bit.split)
   136 
   121 
   137 text \<open>Not sure whether the next two should be simp rules.\<close>
   122 text \<open>Not sure whether the next two should be simp rules.\<close>
   138 
   123 
   139 lemma bit_add_eq_0_iff: "x + y = (0 :: bit) \<longleftrightarrow> x = y"
   124 lemma bit_add_eq_0_iff: "x + y = 0 \<longleftrightarrow> x = y" for x y :: bit
   140   unfolding plus_bit_def by (simp split: bit.split)
   125   unfolding plus_bit_def by (simp split: bit.split)
   141 
   126 
   142 lemma bit_add_eq_1_iff: "x + y = (1 :: bit) \<longleftrightarrow> x \<noteq> y"
   127 lemma bit_add_eq_1_iff: "x + y = 1 \<longleftrightarrow> x \<noteq> y" for x y :: bit
   143   unfolding plus_bit_def by (simp split: bit.split)
   128   unfolding plus_bit_def by (simp split: bit.split)
   144 
   129 
   145 
   130 
   146 subsection \<open>Numerals at type @{typ bit}\<close>
   131 subsection \<open>Numerals at type @{typ bit}\<close>
   147 
   132 
   164 
   149 
   165 context zero_neq_one
   150 context zero_neq_one
   166 begin
   151 begin
   167 
   152 
   168 definition of_bit :: "bit \<Rightarrow> 'a"
   153 definition of_bit :: "bit \<Rightarrow> 'a"
   169 where
   154   where "of_bit b = case_bit 0 1 b"
   170   "of_bit b = case_bit 0 1 b" 
       
   171 
   155 
   172 lemma of_bit_eq [simp, code]:
   156 lemma of_bit_eq [simp, code]:
   173   "of_bit 0 = 0"
   157   "of_bit 0 = 0"
   174   "of_bit 1 = 1"
   158   "of_bit 1 = 1"
   175   by (simp_all add: of_bit_def)
   159   by (simp_all add: of_bit_def)
   176 
   160 
   177 lemma of_bit_eq_iff:
   161 lemma of_bit_eq_iff: "of_bit x = of_bit y \<longleftrightarrow> x = y"
   178   "of_bit x = of_bit y \<longleftrightarrow> x = y"
   162   by (cases x) (cases y; simp)+
   179   by (cases x) (cases y, simp_all)+
       
   180 
       
   181 end  
       
   182 
       
   183 context semiring_1
       
   184 begin
       
   185 
       
   186 lemma of_nat_of_bit_eq:
       
   187   "of_nat (of_bit b) = of_bit b"
       
   188   by (cases b) simp_all
       
   189 
   163 
   190 end
   164 end
   191 
   165 
   192 context ring_1
   166 lemma (in semiring_1) of_nat_of_bit_eq: "of_nat (of_bit b) = of_bit b"
   193 begin
       
   194 
       
   195 lemma of_int_of_bit_eq:
       
   196   "of_int (of_bit b) = of_bit b"
       
   197   by (cases b) simp_all
   167   by (cases b) simp_all
   198 
   168 
   199 end
   169 lemma (in ring_1) of_int_of_bit_eq: "of_int (of_bit b) = of_bit b"
       
   170   by (cases b) simp_all
   200 
   171 
   201 hide_const (open) set
   172 hide_const (open) set
   202 
   173 
   203 end
   174 end