src/HOL/Induct/Tree.thy
changeset 46914 c2ca2c3d23a6
parent 39246 9e58f0499f57
child 58249 180f1b3508ed
equal deleted inserted replaced
46913:3444a24dc4e9 46914:c2ca2c3d23a6
    11 
    11 
    12 datatype 'a tree =
    12 datatype 'a tree =
    13     Atom 'a
    13     Atom 'a
    14   | Branch "nat => 'a tree"
    14   | Branch "nat => 'a tree"
    15 
    15 
    16 primrec
    16 primrec map_tree :: "('a => 'b) => 'a tree => 'b tree"
    17   map_tree :: "('a => 'b) => 'a tree => 'b tree"
       
    18 where
    17 where
    19   "map_tree f (Atom a) = Atom (f a)"
    18   "map_tree f (Atom a) = Atom (f a)"
    20 | "map_tree f (Branch ts) = Branch (\<lambda>x. map_tree f (ts x))"
    19 | "map_tree f (Branch ts) = Branch (\<lambda>x. map_tree f (ts x))"
    21 
    20 
    22 lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g \<circ> f) t"
    21 lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g \<circ> f) t"
    23   by (induct t) simp_all
    22   by (induct t) simp_all
    24 
    23 
    25 primrec
    24 primrec exists_tree :: "('a => bool) => 'a tree => bool"
    26   exists_tree :: "('a => bool) => 'a tree => bool"
       
    27 where
    25 where
    28   "exists_tree P (Atom a) = P a"
    26   "exists_tree P (Atom a) = P a"
    29 | "exists_tree P (Branch ts) = (\<exists>x. exists_tree P (ts x))"
    27 | "exists_tree P (Branch ts) = (\<exists>x. exists_tree P (ts x))"
    30 
    28 
    31 lemma exists_map:
    29 lemma exists_map:
    37 subsection{*The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.*}
    35 subsection{*The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.*}
    38 
    36 
    39 datatype brouwer = Zero | Succ "brouwer" | Lim "nat => brouwer"
    37 datatype brouwer = Zero | Succ "brouwer" | Lim "nat => brouwer"
    40 
    38 
    41 text{*Addition of ordinals*}
    39 text{*Addition of ordinals*}
    42 primrec
    40 primrec add :: "[brouwer,brouwer] => brouwer"
    43   add :: "[brouwer,brouwer] => brouwer"
       
    44 where
    41 where
    45   "add i Zero = i"
    42   "add i Zero = i"
    46 | "add i (Succ j) = Succ (add i j)"
    43 | "add i (Succ j) = Succ (add i j)"
    47 | "add i (Lim f) = Lim (%n. add i (f n))"
    44 | "add i (Lim f) = Lim (%n. add i (f n))"
    48 
    45 
    49 lemma add_assoc: "add (add i j) k = add i (add j k)"
    46 lemma add_assoc: "add (add i j) k = add i (add j k)"
    50   by (induct k) auto
    47   by (induct k) auto
    51 
    48 
    52 text{*Multiplication of ordinals*}
    49 text{*Multiplication of ordinals*}
    53 primrec
    50 primrec mult :: "[brouwer,brouwer] => brouwer"
    54   mult :: "[brouwer,brouwer] => brouwer"
       
    55 where
    51 where
    56   "mult i Zero = Zero"
    52   "mult i Zero = Zero"
    57 | "mult i (Succ j) = add (mult i j) i"
    53 | "mult i (Succ j) = add (mult i j) i"
    58 | "mult i (Lim f) = Lim (%n. mult i (f n))"
    54 | "mult i (Lim f) = Lim (%n. mult i (f n))"
    59 
    55 
    70 
    66 
    71 text{*To use the function package we need an ordering on the Brouwer
    67 text{*To use the function package we need an ordering on the Brouwer
    72   ordinals.  Start with a predecessor relation and form its transitive 
    68   ordinals.  Start with a predecessor relation and form its transitive 
    73   closure. *} 
    69   closure. *} 
    74 
    70 
    75 definition
    71 definition brouwer_pred :: "(brouwer * brouwer) set"
    76   brouwer_pred :: "(brouwer * brouwer) set" where
    72   where "brouwer_pred = (\<Union>i. {(m,n). n = Succ m \<or> (EX f. n = Lim f & m = f i)})"
    77   "brouwer_pred = (\<Union>i. {(m,n). n = Succ m \<or> (EX f. n = Lim f & m = f i)})"
       
    78 
    73 
    79 definition
    74 definition brouwer_order :: "(brouwer * brouwer) set"
    80   brouwer_order :: "(brouwer * brouwer) set" where
    75   where "brouwer_order = brouwer_pred^+"
    81   "brouwer_order = brouwer_pred^+"
       
    82 
    76 
    83 lemma wf_brouwer_pred: "wf brouwer_pred"
    77 lemma wf_brouwer_pred: "wf brouwer_pred"
    84   by(unfold wf_def brouwer_pred_def, clarify, induct_tac x, blast+)
    78   by(unfold wf_def brouwer_pred_def, clarify, induct_tac x, blast+)
    85 
    79 
    86 lemma wf_brouwer_order[simp]: "wf brouwer_order"
    80 lemma wf_brouwer_order[simp]: "wf brouwer_order"
    92 lemma [simp]: "(f n, Lim f) : brouwer_order"
    86 lemma [simp]: "(f n, Lim f) : brouwer_order"
    93   by(auto simp add: brouwer_order_def brouwer_pred_def)
    87   by(auto simp add: brouwer_order_def brouwer_pred_def)
    94 
    88 
    95 text{*Example of a general function*}
    89 text{*Example of a general function*}
    96 
    90 
    97 function
    91 function add2 :: "brouwer \<Rightarrow> brouwer \<Rightarrow> brouwer"
    98   add2 :: "brouwer \<Rightarrow> brouwer \<Rightarrow> brouwer"
       
    99 where
    92 where
   100   "add2 i Zero = i"
    93   "add2 i Zero = i"
   101 | "add2 i (Succ j) = Succ (add2 i j)"
    94 | "add2 i (Succ j) = Succ (add2 i j)"
   102 | "add2 i (Lim f) = Lim (\<lambda>n. add2 i (f n))"
    95 | "add2 i (Lim f) = Lim (\<lambda>n. add2 i (f n))"
   103 by pat_completeness auto
    96 by pat_completeness auto