src/HOL/ex/Set_Algebras.thy
changeset 41582 c34415351b6d
child 44890 22f665a2e91c
equal deleted inserted replaced
41580:220bc60c2387 41582:c34415351b6d
       
     1 (*  Title:      HOL/ex/Set_Algebras.thy
       
     2     Author:     Jeremy Avigad and Kevin Donnelly; Florian Haftmann, TUM
       
     3 *)
       
     4 
       
     5 header {* Algebraic operations on sets *}
       
     6 
       
     7 theory Set_Algebras
       
     8 imports Main Interpretation_with_Defs
       
     9 begin
       
    10 
       
    11 text {*
       
    12   This library lifts operations like addition and muliplication to
       
    13   sets.  It was designed to support asymptotic calculations. See the
       
    14   comments at the top of theory @{text BigO}.
       
    15 *}
       
    16 
       
    17 definition set_plus :: "'a::plus set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<oplus>" 65) where
       
    18   "A \<oplus> B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a + b}"
       
    19 
       
    20 definition set_times :: "'a::times set \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "\<otimes>" 70) where
       
    21   "A \<otimes> B = {c. \<exists>a\<in>A. \<exists>b\<in>B. c = a * b}"
       
    22 
       
    23 definition elt_set_plus :: "'a::plus \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "+o" 70) where
       
    24   "a +o B = {c. \<exists>b\<in>B. c = a + b}"
       
    25 
       
    26 definition elt_set_times :: "'a::times \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "*o" 80) where
       
    27   "a *o B = {c. \<exists>b\<in>B. c = a * b}"
       
    28 
       
    29 abbreviation (input) elt_set_eq :: "'a \<Rightarrow> 'a set \<Rightarrow> bool"  (infix "=o" 50) where
       
    30   "x =o A \<equiv> x \<in> A"
       
    31 
       
    32 interpretation set_add!: semigroup "set_plus :: 'a::semigroup_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    33 qed (force simp add: set_plus_def add.assoc)
       
    34 
       
    35 interpretation set_add!: abel_semigroup "set_plus :: 'a::ab_semigroup_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    36 qed (force simp add: set_plus_def add.commute)
       
    37 
       
    38 interpretation set_add!: monoid "set_plus :: 'a::monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" proof
       
    39 qed (simp_all add: set_plus_def)
       
    40 
       
    41 interpretation set_add!: comm_monoid "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" proof
       
    42 qed (simp add: set_plus_def)
       
    43 
       
    44 interpretation set_add!: monoid_add "set_plus :: 'a::monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}"
       
    45   defines listsum_set is set_add.listsum
       
    46 proof
       
    47 qed (simp_all add: set_add.assoc)
       
    48 
       
    49 interpretation set_add!: comm_monoid_add "set_plus :: 'a::comm_monoid_add set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}"
       
    50   defines setsum_set is set_add.setsum
       
    51   where "monoid_add.listsum set_plus {0::'a} = listsum_set"
       
    52 proof -
       
    53   show "class.comm_monoid_add (set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set) {0}" proof
       
    54   qed (simp_all add: set_add.commute)
       
    55   then interpret set_add!: comm_monoid_add "set_plus :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{0}" .
       
    56   show "monoid_add.listsum set_plus {0::'a} = listsum_set"
       
    57     by (simp only: listsum_set_def)
       
    58 qed
       
    59 
       
    60 interpretation set_mult!: semigroup "set_times :: 'a::semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    61 qed (force simp add: set_times_def mult.assoc)
       
    62 
       
    63 interpretation set_mult!: abel_semigroup "set_times :: 'a::ab_semigroup_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" proof
       
    64 qed (force simp add: set_times_def mult.commute)
       
    65 
       
    66 interpretation set_mult!: monoid "set_times :: 'a::monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" proof
       
    67 qed (simp_all add: set_times_def)
       
    68 
       
    69 interpretation set_mult!: comm_monoid "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" proof
       
    70 qed (simp add: set_times_def)
       
    71 
       
    72 interpretation set_mult!: monoid_mult "{1}" "set_times :: 'a::monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set"
       
    73   defines power_set is set_mult.power
       
    74 proof
       
    75 qed (simp_all add: set_mult.assoc)
       
    76 
       
    77 interpretation set_mult!: comm_monoid_mult "set_times :: 'a::comm_monoid_mult set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}"
       
    78   defines setprod_set is set_mult.setprod
       
    79   where "power.power {1} set_times = power_set"
       
    80 proof -
       
    81   show "class.comm_monoid_mult (set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set) {1}" proof
       
    82   qed (simp_all add: set_mult.commute)
       
    83   then interpret set_mult!: comm_monoid_mult "set_times :: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" "{1}" .
       
    84   show "power.power {1} set_times = power_set"
       
    85     by (simp add: power_set_def)
       
    86 qed
       
    87 
       
    88 lemma set_plus_intro [intro]: "a : C ==> b : D ==> a + b : C \<oplus> D"
       
    89   by (auto simp add: set_plus_def)
       
    90 
       
    91 lemma set_plus_intro2 [intro]: "b : C ==> a + b : a +o C"
       
    92   by (auto simp add: elt_set_plus_def)
       
    93 
       
    94 lemma set_plus_rearrange: "((a::'a::comm_monoid_add) +o C) \<oplus>
       
    95     (b +o D) = (a + b) +o (C \<oplus> D)"
       
    96   apply (auto simp add: elt_set_plus_def set_plus_def add_ac)
       
    97    apply (rule_tac x = "ba + bb" in exI)
       
    98   apply (auto simp add: add_ac)
       
    99   apply (rule_tac x = "aa + a" in exI)
       
   100   apply (auto simp add: add_ac)
       
   101   done
       
   102 
       
   103 lemma set_plus_rearrange2: "(a::'a::semigroup_add) +o (b +o C) =
       
   104     (a + b) +o C"
       
   105   by (auto simp add: elt_set_plus_def add_assoc)
       
   106 
       
   107 lemma set_plus_rearrange3: "((a::'a::semigroup_add) +o B) \<oplus> C =
       
   108     a +o (B \<oplus> C)"
       
   109   apply (auto simp add: elt_set_plus_def set_plus_def)
       
   110    apply (blast intro: add_ac)
       
   111   apply (rule_tac x = "a + aa" in exI)
       
   112   apply (rule conjI)
       
   113    apply (rule_tac x = "aa" in bexI)
       
   114     apply auto
       
   115   apply (rule_tac x = "ba" in bexI)
       
   116    apply (auto simp add: add_ac)
       
   117   done
       
   118 
       
   119 theorem set_plus_rearrange4: "C \<oplus> ((a::'a::comm_monoid_add) +o D) =
       
   120     a +o (C \<oplus> D)"
       
   121   apply (auto intro!: subsetI simp add: elt_set_plus_def set_plus_def add_ac)
       
   122    apply (rule_tac x = "aa + ba" in exI)
       
   123    apply (auto simp add: add_ac)
       
   124   done
       
   125 
       
   126 theorems set_plus_rearranges = set_plus_rearrange set_plus_rearrange2
       
   127   set_plus_rearrange3 set_plus_rearrange4
       
   128 
       
   129 lemma set_plus_mono [intro!]: "C <= D ==> a +o C <= a +o D"
       
   130   by (auto simp add: elt_set_plus_def)
       
   131 
       
   132 lemma set_plus_mono2 [intro]: "(C::('a::plus) set) <= D ==> E <= F ==>
       
   133     C \<oplus> E <= D \<oplus> F"
       
   134   by (auto simp add: set_plus_def)
       
   135 
       
   136 lemma set_plus_mono3 [intro]: "a : C ==> a +o D <= C \<oplus> D"
       
   137   by (auto simp add: elt_set_plus_def set_plus_def)
       
   138 
       
   139 lemma set_plus_mono4 [intro]: "(a::'a::comm_monoid_add) : C ==>
       
   140     a +o D <= D \<oplus> C"
       
   141   by (auto simp add: elt_set_plus_def set_plus_def add_ac)
       
   142 
       
   143 lemma set_plus_mono5: "a:C ==> B <= D ==> a +o B <= C \<oplus> D"
       
   144   apply (subgoal_tac "a +o B <= a +o D")
       
   145    apply (erule order_trans)
       
   146    apply (erule set_plus_mono3)
       
   147   apply (erule set_plus_mono)
       
   148   done
       
   149 
       
   150 lemma set_plus_mono_b: "C <= D ==> x : a +o C
       
   151     ==> x : a +o D"
       
   152   apply (frule set_plus_mono)
       
   153   apply auto
       
   154   done
       
   155 
       
   156 lemma set_plus_mono2_b: "C <= D ==> E <= F ==> x : C \<oplus> E ==>
       
   157     x : D \<oplus> F"
       
   158   apply (frule set_plus_mono2)
       
   159    prefer 2
       
   160    apply force
       
   161   apply assumption
       
   162   done
       
   163 
       
   164 lemma set_plus_mono3_b: "a : C ==> x : a +o D ==> x : C \<oplus> D"
       
   165   apply (frule set_plus_mono3)
       
   166   apply auto
       
   167   done
       
   168 
       
   169 lemma set_plus_mono4_b: "(a::'a::comm_monoid_add) : C ==>
       
   170     x : a +o D ==> x : D \<oplus> C"
       
   171   apply (frule set_plus_mono4)
       
   172   apply auto
       
   173   done
       
   174 
       
   175 lemma set_zero_plus [simp]: "(0::'a::comm_monoid_add) +o C = C"
       
   176   by (auto simp add: elt_set_plus_def)
       
   177 
       
   178 lemma set_zero_plus2: "(0::'a::comm_monoid_add) : A ==> B <= A \<oplus> B"
       
   179   apply (auto intro!: subsetI simp add: set_plus_def)
       
   180   apply (rule_tac x = 0 in bexI)
       
   181    apply (rule_tac x = x in bexI)
       
   182     apply (auto simp add: add_ac)
       
   183   done
       
   184 
       
   185 lemma set_plus_imp_minus: "(a::'a::ab_group_add) : b +o C ==> (a - b) : C"
       
   186   by (auto simp add: elt_set_plus_def add_ac diff_minus)
       
   187 
       
   188 lemma set_minus_imp_plus: "(a::'a::ab_group_add) - b : C ==> a : b +o C"
       
   189   apply (auto simp add: elt_set_plus_def add_ac diff_minus)
       
   190   apply (subgoal_tac "a = (a + - b) + b")
       
   191    apply (rule bexI, assumption, assumption)
       
   192   apply (auto simp add: add_ac)
       
   193   done
       
   194 
       
   195 lemma set_minus_plus: "((a::'a::ab_group_add) - b : C) = (a : b +o C)"
       
   196   by (rule iffI, rule set_minus_imp_plus, assumption, rule set_plus_imp_minus,
       
   197     assumption)
       
   198 
       
   199 lemma set_times_intro [intro]: "a : C ==> b : D ==> a * b : C \<otimes> D"
       
   200   by (auto simp add: set_times_def)
       
   201 
       
   202 lemma set_times_intro2 [intro!]: "b : C ==> a * b : a *o C"
       
   203   by (auto simp add: elt_set_times_def)
       
   204 
       
   205 lemma set_times_rearrange: "((a::'a::comm_monoid_mult) *o C) \<otimes>
       
   206     (b *o D) = (a * b) *o (C \<otimes> D)"
       
   207   apply (auto simp add: elt_set_times_def set_times_def)
       
   208    apply (rule_tac x = "ba * bb" in exI)
       
   209    apply (auto simp add: mult_ac)
       
   210   apply (rule_tac x = "aa * a" in exI)
       
   211   apply (auto simp add: mult_ac)
       
   212   done
       
   213 
       
   214 lemma set_times_rearrange2: "(a::'a::semigroup_mult) *o (b *o C) =
       
   215     (a * b) *o C"
       
   216   by (auto simp add: elt_set_times_def mult_assoc)
       
   217 
       
   218 lemma set_times_rearrange3: "((a::'a::semigroup_mult) *o B) \<otimes> C =
       
   219     a *o (B \<otimes> C)"
       
   220   apply (auto simp add: elt_set_times_def set_times_def)
       
   221    apply (blast intro: mult_ac)
       
   222   apply (rule_tac x = "a * aa" in exI)
       
   223   apply (rule conjI)
       
   224    apply (rule_tac x = "aa" in bexI)
       
   225     apply auto
       
   226   apply (rule_tac x = "ba" in bexI)
       
   227    apply (auto simp add: mult_ac)
       
   228   done
       
   229 
       
   230 theorem set_times_rearrange4: "C \<otimes> ((a::'a::comm_monoid_mult) *o D) =
       
   231     a *o (C \<otimes> D)"
       
   232   apply (auto intro!: subsetI simp add: elt_set_times_def set_times_def
       
   233     mult_ac)
       
   234    apply (rule_tac x = "aa * ba" in exI)
       
   235    apply (auto simp add: mult_ac)
       
   236   done
       
   237 
       
   238 theorems set_times_rearranges = set_times_rearrange set_times_rearrange2
       
   239   set_times_rearrange3 set_times_rearrange4
       
   240 
       
   241 lemma set_times_mono [intro]: "C <= D ==> a *o C <= a *o D"
       
   242   by (auto simp add: elt_set_times_def)
       
   243 
       
   244 lemma set_times_mono2 [intro]: "(C::('a::times) set) <= D ==> E <= F ==>
       
   245     C \<otimes> E <= D \<otimes> F"
       
   246   by (auto simp add: set_times_def)
       
   247 
       
   248 lemma set_times_mono3 [intro]: "a : C ==> a *o D <= C \<otimes> D"
       
   249   by (auto simp add: elt_set_times_def set_times_def)
       
   250 
       
   251 lemma set_times_mono4 [intro]: "(a::'a::comm_monoid_mult) : C ==>
       
   252     a *o D <= D \<otimes> C"
       
   253   by (auto simp add: elt_set_times_def set_times_def mult_ac)
       
   254 
       
   255 lemma set_times_mono5: "a:C ==> B <= D ==> a *o B <= C \<otimes> D"
       
   256   apply (subgoal_tac "a *o B <= a *o D")
       
   257    apply (erule order_trans)
       
   258    apply (erule set_times_mono3)
       
   259   apply (erule set_times_mono)
       
   260   done
       
   261 
       
   262 lemma set_times_mono_b: "C <= D ==> x : a *o C
       
   263     ==> x : a *o D"
       
   264   apply (frule set_times_mono)
       
   265   apply auto
       
   266   done
       
   267 
       
   268 lemma set_times_mono2_b: "C <= D ==> E <= F ==> x : C \<otimes> E ==>
       
   269     x : D \<otimes> F"
       
   270   apply (frule set_times_mono2)
       
   271    prefer 2
       
   272    apply force
       
   273   apply assumption
       
   274   done
       
   275 
       
   276 lemma set_times_mono3_b: "a : C ==> x : a *o D ==> x : C \<otimes> D"
       
   277   apply (frule set_times_mono3)
       
   278   apply auto
       
   279   done
       
   280 
       
   281 lemma set_times_mono4_b: "(a::'a::comm_monoid_mult) : C ==>
       
   282     x : a *o D ==> x : D \<otimes> C"
       
   283   apply (frule set_times_mono4)
       
   284   apply auto
       
   285   done
       
   286 
       
   287 lemma set_one_times [simp]: "(1::'a::comm_monoid_mult) *o C = C"
       
   288   by (auto simp add: elt_set_times_def)
       
   289 
       
   290 lemma set_times_plus_distrib: "(a::'a::semiring) *o (b +o C)=
       
   291     (a * b) +o (a *o C)"
       
   292   by (auto simp add: elt_set_plus_def elt_set_times_def ring_distribs)
       
   293 
       
   294 lemma set_times_plus_distrib2: "(a::'a::semiring) *o (B \<oplus> C) =
       
   295     (a *o B) \<oplus> (a *o C)"
       
   296   apply (auto simp add: set_plus_def elt_set_times_def ring_distribs)
       
   297    apply blast
       
   298   apply (rule_tac x = "b + bb" in exI)
       
   299   apply (auto simp add: ring_distribs)
       
   300   done
       
   301 
       
   302 lemma set_times_plus_distrib3: "((a::'a::semiring) +o C) \<otimes> D <=
       
   303     a *o D \<oplus> C \<otimes> D"
       
   304   apply (auto intro!: subsetI simp add:
       
   305     elt_set_plus_def elt_set_times_def set_times_def
       
   306     set_plus_def ring_distribs)
       
   307   apply auto
       
   308   done
       
   309 
       
   310 theorems set_times_plus_distribs =
       
   311   set_times_plus_distrib
       
   312   set_times_plus_distrib2
       
   313 
       
   314 lemma set_neg_intro: "(a::'a::ring_1) : (- 1) *o C ==>
       
   315     - a : C"
       
   316   by (auto simp add: elt_set_times_def)
       
   317 
       
   318 lemma set_neg_intro2: "(a::'a::ring_1) : C ==>
       
   319     - a : (- 1) *o C"
       
   320   by (auto simp add: elt_set_times_def)
       
   321 
       
   322 lemma set_plus_image:
       
   323   fixes S T :: "'n::semigroup_add set" shows "S \<oplus> T = (\<lambda>(x, y). x + y) ` (S \<times> T)"
       
   324   unfolding set_plus_def by (fastsimp simp: image_iff)
       
   325 
       
   326 lemma set_setsum_alt:
       
   327   assumes fin: "finite I"
       
   328   shows "setsum_set S I = {setsum s I |s. \<forall>i\<in>I. s i \<in> S i}"
       
   329     (is "_ = ?setsum I")
       
   330 using fin proof induct
       
   331   case (insert x F)
       
   332   have "setsum_set S (insert x F) = S x \<oplus> ?setsum F"
       
   333     using insert.hyps by auto
       
   334   also have "...= {s x + setsum s F |s. \<forall> i\<in>insert x F. s i \<in> S i}"
       
   335     unfolding set_plus_def
       
   336   proof safe
       
   337     fix y s assume "y \<in> S x" "\<forall>i\<in>F. s i \<in> S i"
       
   338     then show "\<exists>s'. y + setsum s F = s' x + setsum s' F \<and> (\<forall>i\<in>insert x F. s' i \<in> S i)"
       
   339       using insert.hyps
       
   340       by (intro exI[of _ "\<lambda>i. if i \<in> F then s i else y"]) (auto simp add: set_plus_def)
       
   341   qed auto
       
   342   finally show ?case
       
   343     using insert.hyps by auto
       
   344 qed auto
       
   345 
       
   346 lemma setsum_set_cond_linear:
       
   347   fixes f :: "('a::comm_monoid_add) set \<Rightarrow> ('b::comm_monoid_add) set"
       
   348   assumes [intro!]: "\<And>A B. P A  \<Longrightarrow> P B  \<Longrightarrow> P (A \<oplus> B)" "P {0}"
       
   349     and f: "\<And>A B. P A  \<Longrightarrow> P B \<Longrightarrow> f (A \<oplus> B) = f A \<oplus> f B" "f {0} = {0}"
       
   350   assumes all: "\<And>i. i \<in> I \<Longrightarrow> P (S i)"
       
   351   shows "f (setsum_set S I) = setsum_set (f \<circ> S) I"
       
   352 proof cases
       
   353   assume "finite I" from this all show ?thesis
       
   354   proof induct
       
   355     case (insert x F)
       
   356     from `finite F` `\<And>i. i \<in> insert x F \<Longrightarrow> P (S i)` have "P (setsum_set S F)"
       
   357       by induct auto
       
   358     with insert show ?case
       
   359       by (simp, subst f) auto
       
   360   qed (auto intro!: f)
       
   361 qed (auto intro!: f)
       
   362 
       
   363 lemma setsum_set_linear:
       
   364   fixes f :: "('a::comm_monoid_add) set => ('b::comm_monoid_add) set"
       
   365   assumes "\<And>A B. f(A) \<oplus> f(B) = f(A \<oplus> B)" "f {0} = {0}"
       
   366   shows "f (setsum_set S I) = setsum_set (f \<circ> S) I"
       
   367   using setsum_set_cond_linear[of "\<lambda>x. True" f I S] assms by auto
       
   368 
       
   369 end