equal
deleted
inserted
replaced
668 shows "equiv (carrier G) (rcong H)" |
668 shows "equiv (carrier G) (rcong H)" |
669 proof - |
669 proof - |
670 interpret group G by fact |
670 interpret group G by fact |
671 show ?thesis |
671 show ?thesis |
672 proof (intro equivI) |
672 proof (intro equivI) |
673 show "refl_on (carrier G) (rcong H)" |
673 have "rcong H \<subseteq> carrier G \<times> carrier G" |
|
674 by (auto simp add: r_congruent_def) |
|
675 thus "refl_on (carrier G) (rcong H)" |
674 by (auto simp add: r_congruent_def refl_on_def) |
676 by (auto simp add: r_congruent_def refl_on_def) |
675 next |
677 next |
676 show "sym (rcong H)" |
678 show "sym (rcong H)" |
677 proof (simp add: r_congruent_def sym_def, clarify) |
679 proof (simp add: r_congruent_def sym_def, clarify) |
678 fix x y |
680 fix x y |