src/HOL/Algebra/Coset.thy
changeset 80067 c40bdfc84640
parent 77407 02af8a1b97f6
child 80914 d97fdabd9e2b
equal deleted inserted replaced
80047:19cc354ba625 80067:c40bdfc84640
   668    shows "equiv (carrier G) (rcong H)"
   668    shows "equiv (carrier G) (rcong H)"
   669 proof -
   669 proof -
   670   interpret group G by fact
   670   interpret group G by fact
   671   show ?thesis
   671   show ?thesis
   672   proof (intro equivI)
   672   proof (intro equivI)
   673     show "refl_on (carrier G) (rcong H)"
   673     have "rcong H \<subseteq> carrier G \<times> carrier G"
       
   674       by (auto simp add: r_congruent_def)
       
   675     thus "refl_on (carrier G) (rcong H)"
   674       by (auto simp add: r_congruent_def refl_on_def)
   676       by (auto simp add: r_congruent_def refl_on_def)
   675   next
   677   next
   676     show "sym (rcong H)"
   678     show "sym (rcong H)"
   677     proof (simp add: r_congruent_def sym_def, clarify)
   679     proof (simp add: r_congruent_def sym_def, clarify)
   678       fix x y
   680       fix x y