src/HOL/Limits.thy
changeset 61738 c4f6031f1310
parent 61694 6571c78c9667
child 61799 4cf66f21b764
equal deleted inserted replaced
61736:d6b2d638af23 61738:c4f6031f1310
   629   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   629   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   630   shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
   630   shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
   631   unfolding continuous_def by (rule tendsto_diff)
   631   unfolding continuous_def by (rule tendsto_diff)
   632 
   632 
   633 lemma continuous_on_diff [continuous_intros]:
   633 lemma continuous_on_diff [continuous_intros]:
   634   fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
   634   fixes f g :: "_ \<Rightarrow> 'b::real_normed_vector"
   635   shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
   635   shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
   636   unfolding continuous_on_def by (auto intro: tendsto_diff)
   636   unfolding continuous_on_def by (auto intro: tendsto_diff)
   637 
   637 
   638 lemma continuous_on_op_minus: "continuous_on (s::'a::real_normed_vector set) (op - x)"
   638 lemma continuous_on_op_minus: "continuous_on (s::'a::real_normed_vector set) (op - x)"
   639   by (rule continuous_intros | simp)+
   639   by (rule continuous_intros | simp)+