src/HOL/Matrix/ComputeFloat.thy
changeset 45495 c55a07526dbe
parent 42676 8724f20bf69c
equal deleted inserted replaced
45494:e828ccc5c110 45495:c55a07526dbe
     7 theory ComputeFloat
     7 theory ComputeFloat
     8 imports Complex_Main "~~/src/HOL/Library/Lattice_Algebras"
     8 imports Complex_Main "~~/src/HOL/Library/Lattice_Algebras"
     9 uses "~~/src/Tools/float.ML" ("~~/src/HOL/Tools/float_arith.ML")
     9 uses "~~/src/Tools/float.ML" ("~~/src/HOL/Tools/float_arith.ML")
    10 begin
    10 begin
    11 
    11 
    12 definition pow2 :: "int \<Rightarrow> real"
       
    13   where "pow2 a = (if (0 <= a) then (2^(nat a)) else (inverse (2^(nat (-a)))))"
       
    14 
       
    15 definition float :: "int * int \<Rightarrow> real"
       
    16   where "float x = real (fst x) * pow2 (snd x)"
       
    17 
       
    18 lemma pow2_0[simp]: "pow2 0 = 1"
       
    19 by (simp add: pow2_def)
       
    20 
       
    21 lemma pow2_1[simp]: "pow2 1 = 2"
       
    22 by (simp add: pow2_def)
       
    23 
       
    24 lemma pow2_neg: "pow2 x = inverse (pow2 (-x))"
       
    25 by (simp add: pow2_def)
       
    26 
       
    27 lemma pow2_add1: "pow2 (1 + a) = 2 * (pow2 a)"
       
    28 proof -
       
    29   have h: "! n. nat (2 + int n) - Suc 0 = nat (1 + int n)" by arith
       
    30   have g: "! a b. a - -1 = a + (1::int)" by arith
       
    31   have pos: "! n. pow2 (int n + 1) = 2 * pow2 (int n)"
       
    32     apply (auto, induct_tac n)
       
    33     apply (simp_all add: pow2_def)
       
    34     apply (rule_tac m1="2" and n1="nat (2 + int na)" in ssubst[OF realpow_num_eq_if])
       
    35     by (auto simp add: h)
       
    36   show ?thesis
       
    37   proof (induct a)
       
    38     case (nonneg n)
       
    39     from pos show ?case by (simp add: algebra_simps)
       
    40   next
       
    41     case (neg n)
       
    42     show ?case
       
    43       apply (auto)
       
    44       apply (subst pow2_neg[of "- int n"])
       
    45       apply (subst pow2_neg[of "-1 - int n"])
       
    46       apply (auto simp add: g pos)
       
    47       done
       
    48   qed
       
    49 qed
       
    50 
       
    51 lemma pow2_add: "pow2 (a+b) = (pow2 a) * (pow2 b)"
       
    52 proof (induct b)
       
    53   case (nonneg n)
       
    54   show ?case
       
    55   proof (induct n)
       
    56     case 0
       
    57     show ?case by simp
       
    58   next
       
    59     case (Suc m)
       
    60     show ?case by (auto simp add: algebra_simps pow2_add1 nonneg Suc)
       
    61   qed
       
    62 next
       
    63   case (neg n)
       
    64   show ?case
       
    65   proof (induct n)
       
    66     case 0
       
    67     show ?case
       
    68       apply (auto)
       
    69       apply (subst pow2_neg[of "a + -1"])
       
    70       apply (subst pow2_neg[of "-1"])
       
    71       apply (simp)
       
    72       apply (insert pow2_add1[of "-a"])
       
    73       apply (simp add: algebra_simps)
       
    74       apply (subst pow2_neg[of "-a"])
       
    75       apply (simp)
       
    76       done
       
    77     case (Suc m)
       
    78     have a: "int m - (a + -2) =  1 + (int m - a + 1)" by arith
       
    79     have b: "int m - -2 = 1 + (int m + 1)" by arith
       
    80     show ?case
       
    81       apply (auto)
       
    82       apply (subst pow2_neg[of "a + (-2 - int m)"])
       
    83       apply (subst pow2_neg[of "-2 - int m"])
       
    84       apply (auto simp add: algebra_simps)
       
    85       apply (subst a)
       
    86       apply (subst b)
       
    87       apply (simp only: pow2_add1)
       
    88       apply (subst pow2_neg[of "int m - a + 1"])
       
    89       apply (subst pow2_neg[of "int m + 1"])
       
    90       apply auto
       
    91       apply (insert Suc)
       
    92       apply (auto simp add: algebra_simps)
       
    93       done
       
    94   qed
       
    95 qed
       
    96 
       
    97 lemma "float (a, e) + float (b, e) = float (a + b, e)"
       
    98 by (simp add: float_def algebra_simps)
       
    99 
       
   100 definition int_of_real :: "real \<Rightarrow> int"
    12 definition int_of_real :: "real \<Rightarrow> int"
   101   where "int_of_real x = (SOME y. real y = x)"
    13   where "int_of_real x = (SOME y. real y = x)"
   102 
    14 
   103 definition real_is_int :: "real \<Rightarrow> bool"
    15 definition real_is_int :: "real \<Rightarrow> bool"
   104   where "real_is_int x = (EX (u::int). x = real u)"
    16   where "real_is_int x = (EX (u::int). x = real u)"
   105 
    17 
   106 lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
    18 lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
   107 by (auto simp add: real_is_int_def int_of_real_def)
    19   by (auto simp add: real_is_int_def int_of_real_def)
   108 
       
   109 lemma float_transfer: "real_is_int ((real a)*(pow2 c)) \<Longrightarrow> float (a, b) = float (int_of_real ((real a)*(pow2 c)), b - c)"
       
   110 by (simp add: float_def real_is_int_def2 pow2_add[symmetric])
       
   111 
       
   112 lemma pow2_int: "pow2 (int c) = 2^c"
       
   113 by (simp add: pow2_def)
       
   114 
       
   115 lemma float_transfer_nat: "float (a, b) = float (a * 2^c, b - int c)"
       
   116 by (simp add: float_def pow2_int[symmetric] pow2_add[symmetric])
       
   117 
    20 
   118 lemma real_is_int_real[simp]: "real_is_int (real (x::int))"
    21 lemma real_is_int_real[simp]: "real_is_int (real (x::int))"
   119 by (auto simp add: real_is_int_def int_of_real_def)
    22 by (auto simp add: real_is_int_def int_of_real_def)
   120 
    23 
   121 lemma int_of_real_real[simp]: "int_of_real (real x) = x"
    24 lemma int_of_real_real[simp]: "int_of_real (real x) = x"
   144 by (auto simp add: real_is_int_def)
    47 by (auto simp add: real_is_int_def)
   145 
    48 
   146 lemma int_of_real_mult:
    49 lemma int_of_real_mult:
   147   assumes "real_is_int a" "real_is_int b"
    50   assumes "real_is_int a" "real_is_int b"
   148   shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)"
    51   shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)"
   149 proof -
    52   using assms
   150   from assms have a: "?! (a'::int). real a' = a" by (rule_tac real_is_int_rep, auto)
    53   by (auto simp add: real_is_int_def real_of_int_mult[symmetric]
   151   from assms have b: "?! (b'::int). real b' = b" by (rule_tac real_is_int_rep, auto)
    54            simp del: real_of_int_mult)
   152   from a obtain a'::int where a':"a = real a'" by auto
       
   153   from b obtain b'::int where b':"b = real b'" by auto
       
   154   have r: "real a' * real b' = real (a' * b')" by auto
       
   155   show ?thesis
       
   156     apply (simp add: a' b')
       
   157     apply (subst r)
       
   158     apply (simp only: int_of_real_real)
       
   159     done
       
   160 qed
       
   161 
    55 
   162 lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)"
    56 lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)"
   163 apply (subst real_is_int_def2)
    57 apply (subst real_is_int_def2)
   164 apply (simp add: int_of_real_mult)
    58 apply (simp add: int_of_real_mult)
   165 done
    59 done
   180   also have "\<dots> = True" by (simp only: real_is_int_real)
    74   also have "\<dots> = True" by (simp only: real_is_int_real)
   181   ultimately show ?thesis by auto
    75   ultimately show ?thesis by auto
   182 qed
    76 qed
   183 
    77 
   184 lemma real_is_int_number_of[simp]: "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
    78 lemma real_is_int_number_of[simp]: "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
   185 proof -
    79   by (auto simp: real_is_int_def intro!: exI[of _ "number_of x"])
   186   have neg1: "real_is_int (-1::real)"
       
   187   proof -
       
   188     have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
       
   189     also have "\<dots> = True" by (simp only: real_is_int_real)
       
   190     ultimately show ?thesis by auto
       
   191   qed
       
   192 
       
   193   {
       
   194     fix x :: int
       
   195     have "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
       
   196       unfolding number_of_eq
       
   197       apply (induct x)
       
   198       apply (induct_tac n)
       
   199       apply (simp)
       
   200       apply (simp)
       
   201       apply (induct_tac n)
       
   202       apply (simp add: neg1)
       
   203     proof -
       
   204       fix n :: nat
       
   205       assume rn: "(real_is_int (of_int (- (int (Suc n)))))"
       
   206       have s: "-(int (Suc (Suc n))) = -1 + - (int (Suc n))" by simp
       
   207       show "real_is_int (of_int (- (int (Suc (Suc n)))))"
       
   208         apply (simp only: s of_int_add)
       
   209         apply (rule real_is_int_add)
       
   210         apply (simp add: neg1)
       
   211         apply (simp only: rn)
       
   212         done
       
   213     qed
       
   214   }
       
   215   note Abs_Bin = this
       
   216   {
       
   217     fix x :: int
       
   218     have "? u. x = u"
       
   219       apply (rule exI[where x = "x"])
       
   220       apply (simp)
       
   221       done
       
   222   }
       
   223   then obtain u::int where "x = u" by auto
       
   224   with Abs_Bin show ?thesis by auto
       
   225 qed
       
   226 
    80 
   227 lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
    81 lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
   228 by (simp add: int_of_real_def)
    82 by (simp add: int_of_real_def)
   229 
    83 
   230 lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
    84 lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
   232   have 1: "(1::real) = real (1::int)" by auto
    86   have 1: "(1::real) = real (1::int)" by auto
   233   show ?thesis by (simp only: 1 int_of_real_real)
    87   show ?thesis by (simp only: 1 int_of_real_real)
   234 qed
    88 qed
   235 
    89 
   236 lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
    90 lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
   237 proof -
    91   unfolding int_of_real_def
   238   have "real_is_int (number_of b)" by simp
    92   by (intro some_equality)
   239   then have uu: "?! u::int. number_of b = real u" by (auto simp add: real_is_int_rep)
    93      (auto simp add: real_of_int_inject[symmetric] simp del: real_of_int_inject)
   240   then obtain u::int where u:"number_of b = real u" by auto
       
   241   have "number_of b = real ((number_of b)::int)"
       
   242     by (simp add: number_of_eq real_of_int_def)
       
   243   have ub: "number_of b = real ((number_of b)::int)"
       
   244     by (simp add: number_of_eq real_of_int_def)
       
   245   from uu u ub have unb: "u = number_of b"
       
   246     by blast
       
   247   have "int_of_real (number_of b) = u" by (simp add: u)
       
   248   with unb show ?thesis by simp
       
   249 qed
       
   250 
       
   251 lemma float_transfer_even: "even a \<Longrightarrow> float (a, b) = float (a div 2, b+1)"
       
   252   apply (subst float_transfer[where a="a" and b="b" and c="-1", simplified])
       
   253   apply (simp_all add: pow2_def even_def real_is_int_def algebra_simps)
       
   254   apply (auto)
       
   255 proof -
       
   256   fix q::int
       
   257   have a:"b - (-1\<Colon>int) = (1\<Colon>int) + b" by arith
       
   258   show "(float (q, (b - (-1\<Colon>int)))) = (float (q, ((1\<Colon>int) + b)))"
       
   259     by (simp add: a)
       
   260 qed
       
   261 
    94 
   262 lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
    95 lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
   263 by (rule zdiv_int)
    96 by (rule zdiv_int)
   264 
    97 
   265 lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
    98 lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
   266 by (rule zmod_int)
    99 by (rule zmod_int)
   267 
   100 
   268 lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
   101 lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
   269 by arith
   102 by arith
   270 
       
   271 function norm_float :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
       
   272   "norm_float a b = (if a \<noteq> 0 \<and> even a then norm_float (a div 2) (b + 1)
       
   273     else if a = 0 then (0, 0) else (a, b))"
       
   274 by auto
       
   275 
       
   276 termination by (relation "measure (nat o abs o fst)")
       
   277   (auto intro: abs_div_2_less)
       
   278 
       
   279 lemma norm_float: "float x = float (split norm_float x)"
       
   280 proof -
       
   281   {
       
   282     fix a b :: int
       
   283     have norm_float_pair: "float (a, b) = float (norm_float a b)"
       
   284     proof (induct a b rule: norm_float.induct)
       
   285       case (1 u v)
       
   286       show ?case
       
   287       proof cases
       
   288         assume u: "u \<noteq> 0 \<and> even u"
       
   289         with 1 have ind: "float (u div 2, v + 1) = float (norm_float (u div 2) (v + 1))" by auto
       
   290         with u have "float (u,v) = float (u div 2, v+1)" by (simp add: float_transfer_even)
       
   291         then show ?thesis
       
   292           apply (subst norm_float.simps)
       
   293           apply (simp add: ind)
       
   294           done
       
   295       next
       
   296         assume nu: "~(u \<noteq> 0 \<and> even u)"
       
   297         show ?thesis
       
   298           by (simp add: nu float_def)
       
   299       qed
       
   300     qed
       
   301   }
       
   302   note helper = this
       
   303   have "? a b. x = (a,b)" by auto
       
   304   then obtain a b where "x = (a, b)" by blast
       
   305   then show ?thesis by (simp add: helper)
       
   306 qed
       
   307 
       
   308 lemma float_add_l0: "float (0, e) + x = x"
       
   309   by (simp add: float_def)
       
   310 
       
   311 lemma float_add_r0: "x + float (0, e) = x"
       
   312   by (simp add: float_def)
       
   313 
       
   314 lemma float_add:
       
   315   "float (a1, e1) + float (a2, e2) =
       
   316   (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1)
       
   317   else float (a1*2^(nat (e1-e2))+a2, e2))"
       
   318   apply (simp add: float_def algebra_simps)
       
   319   apply (auto simp add: pow2_int[symmetric] pow2_add[symmetric])
       
   320   done
       
   321 
       
   322 lemma float_add_assoc1:
       
   323   "(x + float (y1, e1)) + float (y2, e2) = (float (y1, e1) + float (y2, e2)) + x"
       
   324   by simp
       
   325 
       
   326 lemma float_add_assoc2:
       
   327   "(float (y1, e1) + x) + float (y2, e2) = (float (y1, e1) + float (y2, e2)) + x"
       
   328   by simp
       
   329 
       
   330 lemma float_add_assoc3:
       
   331   "float (y1, e1) + (x + float (y2, e2)) = (float (y1, e1) + float (y2, e2)) + x"
       
   332   by simp
       
   333 
       
   334 lemma float_add_assoc4:
       
   335   "float (y1, e1) + (float (y2, e2) + x) = (float (y1, e1) + float (y2, e2)) + x"
       
   336   by simp
       
   337 
       
   338 lemma float_mult_l0: "float (0, e) * x = float (0, 0)"
       
   339   by (simp add: float_def)
       
   340 
       
   341 lemma float_mult_r0: "x * float (0, e) = float (0, 0)"
       
   342   by (simp add: float_def)
       
   343 
       
   344 definition lbound :: "real \<Rightarrow> real"
       
   345   where "lbound x = min 0 x"
       
   346 
       
   347 definition ubound :: "real \<Rightarrow> real"
       
   348   where "ubound x = max 0 x"
       
   349 
       
   350 lemma lbound: "lbound x \<le> x"   
       
   351   by (simp add: lbound_def)
       
   352 
       
   353 lemma ubound: "x \<le> ubound x"
       
   354   by (simp add: ubound_def)
       
   355 
       
   356 lemma float_mult:
       
   357   "float (a1, e1) * float (a2, e2) =
       
   358   (float (a1 * a2, e1 + e2))"
       
   359   by (simp add: float_def pow2_add)
       
   360 
       
   361 lemma float_minus:
       
   362   "- (float (a,b)) = float (-a, b)"
       
   363   by (simp add: float_def)
       
   364 
       
   365 lemma zero_less_pow2:
       
   366   "0 < pow2 x"
       
   367 proof -
       
   368   {
       
   369     fix y
       
   370     have "0 <= y \<Longrightarrow> 0 < pow2 y"
       
   371       by (induct y, induct_tac n, simp_all add: pow2_add)
       
   372   }
       
   373   note helper=this
       
   374   show ?thesis
       
   375     apply (case_tac "0 <= x")
       
   376     apply (simp add: helper)
       
   377     apply (subst pow2_neg)
       
   378     apply (simp add: helper)
       
   379     done
       
   380 qed
       
   381 
       
   382 lemma zero_le_float:
       
   383   "(0 <= float (a,b)) = (0 <= a)"
       
   384   apply (auto simp add: float_def)
       
   385   apply (auto simp add: zero_le_mult_iff zero_less_pow2)
       
   386   apply (insert zero_less_pow2[of b])
       
   387   apply (simp_all)
       
   388   done
       
   389 
       
   390 lemma float_le_zero:
       
   391   "(float (a,b) <= 0) = (a <= 0)"
       
   392   apply (auto simp add: float_def)
       
   393   apply (auto simp add: mult_le_0_iff)
       
   394   apply (insert zero_less_pow2[of b])
       
   395   apply auto
       
   396   done
       
   397 
       
   398 lemma float_abs:
       
   399   "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))"
       
   400   apply (auto simp add: abs_if)
       
   401   apply (simp_all add: zero_le_float[symmetric, of a b] float_minus)
       
   402   done
       
   403 
       
   404 lemma float_zero:
       
   405   "float (0, b) = 0"
       
   406   by (simp add: float_def)
       
   407 
       
   408 lemma float_pprt:
       
   409   "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))"
       
   410   by (auto simp add: zero_le_float float_le_zero float_zero)
       
   411 
       
   412 lemma pprt_lbound: "pprt (lbound x) = float (0, 0)"
       
   413   apply (simp add: float_def)
       
   414   apply (rule pprt_eq_0)
       
   415   apply (simp add: lbound_def)
       
   416   done
       
   417 
       
   418 lemma nprt_ubound: "nprt (ubound x) = float (0, 0)"
       
   419   apply (simp add: float_def)
       
   420   apply (rule nprt_eq_0)
       
   421   apply (simp add: ubound_def)
       
   422   done
       
   423 
       
   424 lemma float_nprt:
       
   425   "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))"
       
   426   by (auto simp add: zero_le_float float_le_zero float_zero)
       
   427 
   103 
   428 lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
   104 lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
   429   by auto
   105   by auto
   430 
   106 
   431 lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
   107 lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
   547 
   223 
   548 lemmas powerarith = nat_number_of zpower_number_of_even
   224 lemmas powerarith = nat_number_of zpower_number_of_even
   549   zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
   225   zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
   550   zpower_Pls zpower_Min
   226   zpower_Pls zpower_Min
   551 
   227 
       
   228 definition float :: "(int \<times> int) \<Rightarrow> real" where
       
   229   "float = (\<lambda>(a, b). real a * 2 powr real b)"
       
   230 
       
   231 lemma float_add_l0: "float (0, e) + x = x"
       
   232   by (simp add: float_def)
       
   233 
       
   234 lemma float_add_r0: "x + float (0, e) = x"
       
   235   by (simp add: float_def)
       
   236 
       
   237 lemma float_add:
       
   238   "float (a1, e1) + float (a2, e2) =
       
   239   (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1) else float (a1*2^(nat (e1-e2))+a2, e2))"
       
   240   by (simp add: float_def algebra_simps powr_realpow[symmetric] powr_divide2[symmetric])
       
   241 
       
   242 lemma float_mult_l0: "float (0, e) * x = float (0, 0)"
       
   243   by (simp add: float_def)
       
   244 
       
   245 lemma float_mult_r0: "x * float (0, e) = float (0, 0)"
       
   246   by (simp add: float_def)
       
   247 
       
   248 lemma float_mult:
       
   249   "float (a1, e1) * float (a2, e2) = (float (a1 * a2, e1 + e2))"
       
   250   by (simp add: float_def powr_add)
       
   251 
       
   252 lemma float_minus:
       
   253   "- (float (a,b)) = float (-a, b)"
       
   254   by (simp add: float_def)
       
   255 
       
   256 lemma zero_le_float:
       
   257   "(0 <= float (a,b)) = (0 <= a)"
       
   258   using powr_gt_zero[of 2 "real b", arith]
       
   259   by (simp add: float_def zero_le_mult_iff)
       
   260 
       
   261 lemma float_le_zero:
       
   262   "(float (a,b) <= 0) = (a <= 0)"
       
   263   using powr_gt_zero[of 2 "real b", arith]
       
   264   by (simp add: float_def mult_le_0_iff)
       
   265 
       
   266 lemma float_abs:
       
   267   "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))"
       
   268   using powr_gt_zero[of 2 "real b", arith]
       
   269   by (simp add: float_def abs_if mult_less_0_iff)
       
   270 
       
   271 lemma float_zero:
       
   272   "float (0, b) = 0"
       
   273   by (simp add: float_def)
       
   274 
       
   275 lemma float_pprt:
       
   276   "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))"
       
   277   by (auto simp add: zero_le_float float_le_zero float_zero)
       
   278 
       
   279 lemma float_nprt:
       
   280   "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))"
       
   281   by (auto simp add: zero_le_float float_le_zero float_zero)
       
   282 
       
   283 definition lbound :: "real \<Rightarrow> real"
       
   284   where "lbound x = min 0 x"
       
   285 
       
   286 definition ubound :: "real \<Rightarrow> real"
       
   287   where "ubound x = max 0 x"
       
   288 
       
   289 lemma lbound: "lbound x \<le> x"   
       
   290   by (simp add: lbound_def)
       
   291 
       
   292 lemma ubound: "x \<le> ubound x"
       
   293   by (simp add: ubound_def)
       
   294 
       
   295 lemma pprt_lbound: "pprt (lbound x) = float (0, 0)"
       
   296   by (auto simp: float_def lbound_def)
       
   297 
       
   298 lemma nprt_ubound: "nprt (ubound x) = float (0, 0)"
       
   299   by (auto simp: float_def ubound_def)
       
   300 
   552 lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 
   301 lemmas floatarith[simplified norm_0_1] = float_add float_add_l0 float_add_r0 float_mult float_mult_l0 float_mult_r0 
   553           float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound
   302           float_minus float_abs zero_le_float float_pprt float_nprt pprt_lbound nprt_ubound
   554 
   303 
   555 (* for use with the compute oracle *)
   304 (* for use with the compute oracle *)
   556 lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false
   305 lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false