src/HOLCF/IOA/NTP/Lemmas.thy
changeset 19739 c58ef2aa5430
parent 17244 0b2ff9541727
child 35174 e15040ae75d7
equal deleted inserted replaced
19738:1ac610922636 19739:c58ef2aa5430
     5 
     5 
     6 theory Lemmas
     6 theory Lemmas
     7 imports Main
     7 imports Main
     8 begin
     8 begin
     9 
     9 
       
    10 subsubsection {* Logic *}
       
    11 
       
    12 lemma neg_flip: "(X = (~ Y)) = ((~X) = Y)"
       
    13   by blast
       
    14 
       
    15 
       
    16 subsection {* Sets *}
       
    17 
       
    18 lemma set_lemmas:
       
    19   "f(x) : (UN x. {f(x)})"
       
    20   "f x y : (UN x y. {f x y})"
       
    21   "!!a. (!x. a ~= f(x)) ==> a ~: (UN x. {f(x)})"
       
    22   "!!a. (!x y. a ~= f x y) ==> a ~: (UN x y. {f x y})"
       
    23   by auto
       
    24 
       
    25 
       
    26 subsection {* Arithmetic *}
       
    27 
       
    28 lemma pred_suc: "0<x ==> (x - 1 = y) = (x = Suc(y))"
       
    29   by (simp add: diff_Suc split add: nat.split)
       
    30 
       
    31 lemmas [simp] = hd_append set_lemmas
       
    32 
    10 end
    33 end
    11