equal
deleted
inserted
replaced
325 apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) |
325 apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) |
326 done |
326 done |
327 |
327 |
328 lemma convex_unit_less_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y" |
328 lemma convex_unit_less_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y" |
329 apply (rule iffI) |
329 apply (rule iffI) |
330 apply (rule bifinite_less_ext) |
330 apply (rule profinite_less_ext) |
331 apply (drule_tac f="approx i" in monofun_cfun_arg, simp) |
331 apply (drule_tac f="approx i" in monofun_cfun_arg, simp) |
332 apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) |
332 apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) |
333 apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp) |
333 apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp) |
334 apply clarsimp |
334 apply clarsimp |
335 apply (erule monofun_cfun_arg) |
335 apply (erule monofun_cfun_arg) |
344 lemma convex_unit_strict_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>" |
344 lemma convex_unit_strict_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>" |
345 unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff) |
345 unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff) |
346 |
346 |
347 lemma compact_convex_unit_iff [simp]: |
347 lemma compact_convex_unit_iff [simp]: |
348 "compact {x}\<natural> \<longleftrightarrow> compact x" |
348 "compact {x}\<natural> \<longleftrightarrow> compact x" |
349 unfolding bifinite_compact_iff by simp |
349 unfolding profinite_compact_iff by simp |
350 |
350 |
351 lemma compact_convex_plus [simp]: |
351 lemma compact_convex_plus [simp]: |
352 "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<natural> ys)" |
352 "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<natural> ys)" |
353 by (auto dest!: convex_pd.compact_imp_principal) |
353 by (auto dest!: convex_pd.compact_imp_principal) |
354 |
354 |
587 lemma convex_pd_less_iff: |
587 lemma convex_pd_less_iff: |
588 "(xs \<sqsubseteq> ys) = |
588 "(xs \<sqsubseteq> ys) = |
589 (convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and> |
589 (convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and> |
590 convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)" |
590 convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)" |
591 apply (safe elim!: monofun_cfun_arg) |
591 apply (safe elim!: monofun_cfun_arg) |
592 apply (rule bifinite_less_ext) |
592 apply (rule profinite_less_ext) |
593 apply (drule_tac f="approx i" in monofun_cfun_arg) |
593 apply (drule_tac f="approx i" in monofun_cfun_arg) |
594 apply (drule_tac f="approx i" in monofun_cfun_arg) |
594 apply (drule_tac f="approx i" in monofun_cfun_arg) |
595 apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp) |
595 apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp) |
596 apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) |
596 apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) |
597 apply clarify |
597 apply clarify |