equal
deleted
inserted
replaced
1 (* Title: HOL/Import/Import_Setup.thy |
1 (* Title: HOL/Import/Import_Setup.thy |
2 Author: Cezary Kaliszyk, University of Innsbruck |
2 Author: Cezary Kaliszyk, University of Innsbruck |
3 Author: Alexander Krauss, QAware GmbH |
3 Author: Alexander Krauss, QAware GmbH |
4 *) |
4 *) |
5 |
5 |
6 section \<open>Importer machinery and required theorems\<close> |
6 section \<open>Importer machinery\<close> |
7 |
7 |
8 theory Import_Setup |
8 theory Import_Setup |
9 imports Main |
9 imports Main |
10 keywords "import_type_map" "import_const_map" "import_file" :: thy_decl |
10 keywords "import_type_map" "import_const_map" "import_file" :: thy_decl |
11 begin |
11 begin |
12 |
12 |
13 ML_file \<open>import_data.ML\<close> |
13 ML_file \<open>import_data.ML\<close> |
14 |
|
15 lemma light_ex_imp_nonempty: "P t \<Longrightarrow> \<exists>x. x \<in> Collect P" |
|
16 by auto |
|
17 |
|
18 lemma typedef_hol2hollight: |
|
19 "type_definition Rep Abs (Collect P) \<Longrightarrow> Abs (Rep a) = a \<and> P r = (Rep (Abs r) = r)" |
|
20 by (metis type_definition.Rep_inverse type_definition.Abs_inverse |
|
21 type_definition.Rep mem_Collect_eq) |
|
22 |
|
23 lemma ext2: "(\<And>x. f x = g x) \<Longrightarrow> f = g" |
|
24 by (rule ext) |
|
25 |
|
26 ML_file \<open>import_rule.ML\<close> |
14 ML_file \<open>import_rule.ML\<close> |
27 |
15 |
28 end |
16 end |
29 |
|