src/HOL/Import/Import_Setup.thy
changeset 81829 ca1ad6660b4a
parent 81828 b93e6b458433
child 81904 aa28d82d6b66
equal deleted inserted replaced
81828:b93e6b458433 81829:ca1ad6660b4a
     1 (*  Title:      HOL/Import/Import_Setup.thy
     1 (*  Title:      HOL/Import/Import_Setup.thy
     2     Author:     Cezary Kaliszyk, University of Innsbruck
     2     Author:     Cezary Kaliszyk, University of Innsbruck
     3     Author:     Alexander Krauss, QAware GmbH
     3     Author:     Alexander Krauss, QAware GmbH
     4 *)
     4 *)
     5 
     5 
     6 section \<open>Importer machinery and required theorems\<close>
     6 section \<open>Importer machinery\<close>
     7 
     7 
     8 theory Import_Setup
     8 theory Import_Setup
     9 imports Main
     9 imports Main
    10 keywords "import_type_map" "import_const_map" "import_file" :: thy_decl
    10 keywords "import_type_map" "import_const_map" "import_file" :: thy_decl
    11 begin
    11 begin
    12 
    12 
    13 ML_file \<open>import_data.ML\<close>
    13 ML_file \<open>import_data.ML\<close>
    14 
       
    15 lemma light_ex_imp_nonempty: "P t \<Longrightarrow> \<exists>x. x \<in> Collect P"
       
    16   by auto
       
    17 
       
    18 lemma typedef_hol2hollight:
       
    19   "type_definition Rep Abs (Collect P) \<Longrightarrow> Abs (Rep a) = a \<and> P r = (Rep (Abs r) = r)"
       
    20   by (metis type_definition.Rep_inverse type_definition.Abs_inverse
       
    21       type_definition.Rep mem_Collect_eq)
       
    22 
       
    23 lemma ext2: "(\<And>x. f x = g x) \<Longrightarrow> f = g"
       
    24   by (rule ext)
       
    25 
       
    26 ML_file \<open>import_rule.ML\<close>
    14 ML_file \<open>import_rule.ML\<close>
    27 
    15 
    28 end
    16 end
    29