72 using real_sqrt_sum_squares_ge1 [of "x" y] |
95 using real_sqrt_sum_squares_ge1 [of "x" y] |
73 real_sqrt_sum_squares_ge1 [of "-x" y] |
96 real_sqrt_sum_squares_ge1 [of "-x" y] |
74 real_sqrt_sum_squares_eq_cancel [of x y] |
97 real_sqrt_sum_squares_eq_cancel [of x y] |
75 apply (auto simp: csqrt_def intro!: Rings.ordered_ring_class.split_mult_pos_le) |
98 apply (auto simp: csqrt_def intro!: Rings.ordered_ring_class.split_mult_pos_le) |
76 apply (metis add_commute diff_add_cancel le_add_same_cancel1 real_sqrt_sum_squares_ge1) |
99 apply (metis add_commute diff_add_cancel le_add_same_cancel1 real_sqrt_sum_squares_ge1) |
77 by (metis add_commute less_eq_real_def power_minus_Bit0 real_0_less_add_iff real_sqrt_sum_squares_eq_cancel) |
100 apply (metis add_commute less_eq_real_def power_minus_Bit0 |
|
101 real_0_less_add_iff real_sqrt_sum_squares_eq_cancel) |
|
102 done |
78 qed |
103 qed |
79 |
104 |
80 lemma Re_csqrt: "0 \<le> Re(csqrt z)" |
105 lemma Re_csqrt: "0 \<le> Re(csqrt z)" |
81 by (metis csqrt_principal le_less) |
106 by (metis csqrt_principal le_less) |
82 |
107 |
83 lemma csqrt_square: "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> csqrt (z^2) = z" |
108 lemma csqrt_square: "0 < Re z \<or> Re z = 0 \<and> 0 \<le> Im z \<Longrightarrow> csqrt (z\<^sup>2) = z" |
84 using csqrt [of "z^2"] csqrt_principal [of "z^2"] |
109 using csqrt [of "z\<^sup>2"] csqrt_principal [of "z\<^sup>2"] |
85 by (cases z) (auto simp: power2_eq_iff) |
110 by (cases z) (auto simp: power2_eq_iff) |
86 |
111 |
87 lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0" |
112 lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0" |
88 by auto (metis csqrt power_eq_0_iff) |
113 by auto (metis csqrt power_eq_0_iff) |
89 |
114 |
90 lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1" |
115 lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1" |
91 by auto (metis csqrt power2_eq_1_iff) |
116 by auto (metis csqrt power2_eq_1_iff) |
92 |
117 |
93 subsection{* More lemmas about module of complex numbers *} |
118 |
|
119 subsection {* More lemmas about module of complex numbers *} |
94 |
120 |
95 lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)" |
121 lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)" |
96 by (rule of_real_power [symmetric]) |
122 by (rule of_real_power [symmetric]) |
97 |
123 |
98 text{* The triangle inequality for cmod *} |
124 text{* The triangle inequality for cmod *} |
99 lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z" |
125 lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z" |
100 using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto |
126 using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto |
101 |
127 |
102 subsection{* Basic lemmas about polynomials *} |
128 |
|
129 subsection {* Basic lemmas about polynomials *} |
103 |
130 |
104 lemma poly_bound_exists: |
131 lemma poly_bound_exists: |
105 fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" |
132 fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly" |
106 shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z <= r \<longrightarrow> norm (poly p z) \<le> m)" |
133 shows "\<exists>m. m > 0 \<and> (\<forall>z. norm z \<le> r \<longrightarrow> norm (poly p z) \<le> m)" |
107 proof(induct p) |
134 proof (induct p) |
108 case 0 thus ?case by (rule exI[where x=1], simp) |
135 case 0 |
|
136 then show ?case by (rule exI[where x=1]) simp |
109 next |
137 next |
110 case (pCons c cs) |
138 case (pCons c cs) |
111 from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m" |
139 from pCons.hyps obtain m where m: "\<forall>z. norm z \<le> r \<longrightarrow> norm (poly cs z) \<le> m" |
112 by blast |
140 by blast |
113 let ?k = " 1 + norm c + \<bar>r * m\<bar>" |
141 let ?k = " 1 + norm c + \<bar>r * m\<bar>" |
114 have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith |
142 have kp: "?k > 0" using abs_ge_zero[of "r*m"] norm_ge_zero[of c] by arith |
115 {fix z :: 'a |
143 { |
|
144 fix z :: 'a |
116 assume H: "norm z \<le> r" |
145 assume H: "norm z \<le> r" |
117 from m H have th: "norm (poly cs z) \<le> m" by blast |
146 from m H have th: "norm (poly cs z) \<le> m" |
118 from H have rp: "r \<ge> 0" using norm_ge_zero[of z] by arith |
147 by blast |
|
148 from H have rp: "r \<ge> 0" using norm_ge_zero[of z] |
|
149 by arith |
119 have "norm (poly (pCons c cs) z) \<le> norm c + norm (z* poly cs z)" |
150 have "norm (poly (pCons c cs) z) \<le> norm c + norm (z* poly cs z)" |
120 using norm_triangle_ineq[of c "z* poly cs z"] by simp |
151 using norm_triangle_ineq[of c "z* poly cs z"] by simp |
121 also have "\<dots> \<le> norm c + r*m" using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] |
152 also have "\<dots> \<le> norm c + r * m" |
|
153 using mult_mono[OF H th rp norm_ge_zero[of "poly cs z"]] |
122 by (simp add: norm_mult) |
154 by (simp add: norm_mult) |
123 also have "\<dots> \<le> ?k" by simp |
155 also have "\<dots> \<le> ?k" |
124 finally have "norm (poly (pCons c cs) z) \<le> ?k" .} |
156 by simp |
|
157 finally have "norm (poly (pCons c cs) z) \<le> ?k" . |
|
158 } |
125 with kp show ?case by blast |
159 with kp show ?case by blast |
126 qed |
160 qed |
127 |
161 |
128 |
162 |
129 text{* Offsetting the variable in a polynomial gives another of same degree *} |
163 text{* Offsetting the variable in a polynomial gives another of same degree *} |
130 |
164 |
131 definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly" |
165 definition offset_poly :: "'a::comm_semiring_0 poly \<Rightarrow> 'a \<Rightarrow> 'a poly" |
132 where |
166 where "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0" |
133 "offset_poly p h = fold_coeffs (\<lambda>a q. smult h q + pCons a q) p 0" |
|
134 |
167 |
135 lemma offset_poly_0: "offset_poly 0 h = 0" |
168 lemma offset_poly_0: "offset_poly 0 h = 0" |
136 by (simp add: offset_poly_def) |
169 by (simp add: offset_poly_def) |
137 |
170 |
138 lemma offset_poly_pCons: |
171 lemma offset_poly_pCons: |
139 "offset_poly (pCons a p) h = |
172 "offset_poly (pCons a p) h = |
140 smult h (offset_poly p h) + pCons a (offset_poly p h)" |
173 smult h (offset_poly p h) + pCons a (offset_poly p h)" |
141 by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def) |
174 by (cases "p = 0 \<and> a = 0") (auto simp add: offset_poly_def) |
142 |
175 |
143 lemma offset_poly_single: "offset_poly [:a:] h = [:a:]" |
176 lemma offset_poly_single: "offset_poly [:a:] h = [:a:]" |
144 by (simp add: offset_poly_pCons offset_poly_0) |
177 by (simp add: offset_poly_pCons offset_poly_0) |
145 |
178 |
146 lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)" |
179 lemma poly_offset_poly: "poly (offset_poly p h) x = poly p (h + x)" |
147 apply (induct p) |
180 apply (induct p) |
148 apply (simp add: offset_poly_0) |
181 apply (simp add: offset_poly_0) |
149 apply (simp add: offset_poly_pCons algebra_simps) |
182 apply (simp add: offset_poly_pCons algebra_simps) |
150 done |
183 done |
151 |
184 |
152 lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0" |
185 lemma offset_poly_eq_0_lemma: "smult c p + pCons a p = 0 \<Longrightarrow> p = 0" |
153 by (induct p arbitrary: a, simp, force) |
186 by (induct p arbitrary: a) (simp, force) |
154 |
187 |
155 lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0" |
188 lemma offset_poly_eq_0_iff: "offset_poly p h = 0 \<longleftrightarrow> p = 0" |
156 apply (safe intro!: offset_poly_0) |
189 apply (safe intro!: offset_poly_0) |
157 apply (induct p, simp) |
190 apply (induct p, simp) |
158 apply (simp add: offset_poly_pCons) |
191 apply (simp add: offset_poly_pCons) |
159 apply (frule offset_poly_eq_0_lemma, simp) |
192 apply (frule offset_poly_eq_0_lemma, simp) |
160 done |
193 done |
161 |
194 |
162 lemma degree_offset_poly: "degree (offset_poly p h) = degree p" |
195 lemma degree_offset_poly: "degree (offset_poly p h) = degree p" |
163 apply (induct p) |
196 apply (induct p) |
164 apply (simp add: offset_poly_0) |
197 apply (simp add: offset_poly_0) |
165 apply (case_tac "p = 0") |
198 apply (case_tac "p = 0") |
166 apply (simp add: offset_poly_0 offset_poly_pCons) |
199 apply (simp add: offset_poly_0 offset_poly_pCons) |
167 apply (simp add: offset_poly_pCons) |
200 apply (simp add: offset_poly_pCons) |
168 apply (subst degree_add_eq_right) |
201 apply (subst degree_add_eq_right) |
169 apply (rule le_less_trans [OF degree_smult_le]) |
202 apply (rule le_less_trans [OF degree_smult_le]) |
170 apply (simp add: offset_poly_eq_0_iff) |
203 apply (simp add: offset_poly_eq_0_iff) |
171 apply (simp add: offset_poly_eq_0_iff) |
204 apply (simp add: offset_poly_eq_0_iff) |
172 done |
205 done |
173 |
206 |
174 definition |
207 definition "psize p = (if p = 0 then 0 else Suc (degree p))" |
175 "psize p = (if p = 0 then 0 else Suc (degree p))" |
|
176 |
208 |
177 lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0" |
209 lemma psize_eq_0_iff [simp]: "psize p = 0 \<longleftrightarrow> p = 0" |
178 unfolding psize_def by simp |
210 unfolding psize_def by simp |
179 |
211 |
180 lemma poly_offset: |
212 lemma poly_offset: |
181 fixes p:: "('a::comm_ring_1) poly" |
213 fixes p :: "'a::comm_ring_1 poly" |
182 shows "\<exists> q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))" |
214 shows "\<exists>q. psize q = psize p \<and> (\<forall>x. poly q x = poly p (a + x))" |
183 proof (intro exI conjI) |
215 proof (intro exI conjI) |
184 show "psize (offset_poly p a) = psize p" |
216 show "psize (offset_poly p a) = psize p" |
185 unfolding psize_def |
217 unfolding psize_def |
186 by (simp add: offset_poly_eq_0_iff degree_offset_poly) |
218 by (simp add: offset_poly_eq_0_iff degree_offset_poly) |
187 show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)" |
219 show "\<forall>x. poly (offset_poly p a) x = poly p (a + x)" |
188 by (simp add: poly_offset_poly) |
220 by (simp add: poly_offset_poly) |
189 qed |
221 qed |
190 |
222 |
191 text{* An alternative useful formulation of completeness of the reals *} |
223 text{* An alternative useful formulation of completeness of the reals *} |
192 lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z" |
224 lemma real_sup_exists: |
193 shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s" |
225 assumes ex: "\<exists>x. P x" |
|
226 and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z" |
|
227 shows "\<exists>s::real. \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s" |
194 proof |
228 proof |
195 from bz have "bdd_above (Collect P)" |
229 from bz have "bdd_above (Collect P)" |
196 by (force intro: less_imp_le) |
230 by (force intro: less_imp_le) |
197 then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)" |
231 then show "\<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < Sup (Collect P)" |
198 using ex bz by (subst less_cSup_iff) auto |
232 using ex bz by (subst less_cSup_iff) auto |
249 apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult) |
300 apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult) |
250 apply (auto simp add: m power_mult) |
301 apply (auto simp add: m power_mult) |
251 apply (rule_tac x="ii" in exI) |
302 apply (rule_tac x="ii" in exI) |
252 apply (auto simp add: m power_mult) |
303 apply (auto simp add: m power_mult) |
253 done |
304 done |
254 then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast |
305 then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" |
|
306 by blast |
255 let ?w = "v / complex_of_real (root n (cmod b))" |
307 let ?w = "v / complex_of_real (root n (cmod b))" |
256 from odd_real_root_pow[OF o, of "cmod b"] |
308 from odd_real_root_pow[OF o, of "cmod b"] |
257 have th1: "?w ^ n = v^n / complex_of_real (cmod b)" |
309 have th1: "?w ^ n = v^n / complex_of_real (cmod b)" |
258 by (simp add: power_divide complex_of_real_power) |
310 by (simp add: power_divide complex_of_real_power) |
259 have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: norm_divide) |
311 have th2:"cmod (complex_of_real (cmod b) / b) = 1" |
260 hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp |
312 using b by (simp add: norm_divide) |
|
313 then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" |
|
314 by simp |
261 have th4: "cmod (complex_of_real (cmod b) / b) * |
315 have th4: "cmod (complex_of_real (cmod b) / b) * |
262 cmod (1 + b * (v ^ n / complex_of_real (cmod b))) |
316 cmod (1 + b * (v ^ n / complex_of_real (cmod b))) < |
263 < cmod (complex_of_real (cmod b) / b) * 1" |
317 cmod (complex_of_real (cmod b) / b) * 1" |
264 apply (simp only: norm_mult[symmetric] distrib_left) |
318 apply (simp only: norm_mult[symmetric] distrib_left) |
265 using b v by (simp add: th2) |
319 using b v |
266 |
320 apply (simp add: th2) |
|
321 done |
267 from mult_less_imp_less_left[OF th4 th3] |
322 from mult_less_imp_less_left[OF th4 th3] |
268 have "?P ?w n" unfolding th1 . |
323 have "?P ?w n" unfolding th1 . |
269 hence "\<exists>z. ?P z n" .. } |
324 then have "\<exists>z. ?P z n" .. |
|
325 } |
270 ultimately show "\<exists>z. ?P z n" by blast |
326 ultimately show "\<exists>z. ?P z n" by blast |
271 qed |
327 qed |
272 |
328 |
273 text{* Bolzano-Weierstrass type property for closed disc in complex plane. *} |
329 text{* Bolzano-Weierstrass type property for closed disc in complex plane. *} |
274 |
330 |
275 lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>" |
331 lemma metric_bound_lemma: "cmod (x - y) \<le> \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>" |
276 using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ] |
332 using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ] |
277 unfolding cmod_def by simp |
333 unfolding cmod_def by simp |
278 |
334 |
279 lemma bolzano_weierstrass_complex_disc: |
335 lemma bolzano_weierstrass_complex_disc: |
280 assumes r: "\<forall>n. cmod (s n) \<le> r" |
336 assumes r: "\<forall>n. cmod (s n) \<le> r" |
281 shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)" |
337 shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)" |
282 proof- |
338 proof- |
283 from seq_monosub[of "Re o s"] |
339 from seq_monosub[of "Re \<circ> s"] |
284 obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))" |
340 obtain f where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))" |
285 unfolding o_def by blast |
341 unfolding o_def by blast |
286 from seq_monosub[of "Im o s o f"] |
342 from seq_monosub[of "Im \<circ> s \<circ> f"] |
287 obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast |
343 obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s (f (g n))))" |
288 let ?h = "f o g" |
344 unfolding o_def by blast |
289 from r[rule_format, of 0] have rp: "r \<ge> 0" using norm_ge_zero[of "s 0"] by arith |
345 let ?h = "f \<circ> g" |
290 have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>" |
346 from r[rule_format, of 0] have rp: "r \<ge> 0" |
|
347 using norm_ge_zero[of "s 0"] by arith |
|
348 have th: "\<forall>n. r + 1 \<ge> \<bar>Re (s n)\<bar>" |
291 proof |
349 proof |
292 fix n |
350 fix n |
293 from abs_Re_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith |
351 from abs_Re_le_cmod[of "s n"] r[rule_format, of n] |
|
352 show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith |
294 qed |
353 qed |
295 have conv1: "convergent (\<lambda>n. Re (s ( f n)))" |
354 have conv1: "convergent (\<lambda>n. Re (s (f n)))" |
296 apply (rule Bseq_monoseq_convergent) |
355 apply (rule Bseq_monoseq_convergent) |
297 apply (simp add: Bseq_def) |
356 apply (simp add: Bseq_def) |
298 apply (metis gt_ex le_less_linear less_trans order.trans th) |
357 apply (metis gt_ex le_less_linear less_trans order.trans th) |
299 using f(2) . |
358 apply (rule f(2)) |
300 have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>" |
359 done |
|
360 have th: "\<forall>n. r + 1 \<ge> \<bar>Im (s n)\<bar>" |
301 proof |
361 proof |
302 fix n |
362 fix n |
303 from abs_Im_le_cmod[of "s n"] r[rule_format, of n] show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith |
363 from abs_Im_le_cmod[of "s n"] r[rule_format, of n] |
|
364 show "\<bar>Im (s n)\<bar> \<le> r + 1" |
|
365 by arith |
304 qed |
366 qed |
305 |
367 |
306 have conv2: "convergent (\<lambda>n. Im (s (f (g n))))" |
368 have conv2: "convergent (\<lambda>n. Im (s (f (g n))))" |
307 apply (rule Bseq_monoseq_convergent) |
369 apply (rule Bseq_monoseq_convergent) |
308 apply (simp add: Bseq_def) |
370 apply (simp add: Bseq_def) |
309 apply (metis gt_ex le_less_linear less_trans order.trans th) |
371 apply (metis gt_ex le_less_linear less_trans order.trans th) |
310 using g(2) . |
372 apply (rule g(2)) |
|
373 done |
311 |
374 |
312 from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x" |
375 from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x" |
313 by blast |
376 by blast |
314 hence x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r" |
377 then have x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r" |
315 unfolding LIMSEQ_iff real_norm_def . |
378 unfolding LIMSEQ_iff real_norm_def . |
316 |
379 |
317 from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y" |
380 from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y" |
318 by blast |
381 by blast |
319 hence y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r" |
382 then have y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r" |
320 unfolding LIMSEQ_iff real_norm_def . |
383 unfolding LIMSEQ_iff real_norm_def . |
321 let ?w = "Complex x y" |
384 let ?w = "Complex x y" |
322 from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto |
385 from f(1) g(1) have hs: "subseq ?h" |
323 {fix e assume ep: "e > (0::real)" |
386 unfolding subseq_def by auto |
324 hence e2: "e/2 > 0" by simp |
387 { |
|
388 fix e :: real |
|
389 assume ep: "e > 0" |
|
390 then have e2: "e/2 > 0" by simp |
325 from x[rule_format, OF e2] y[rule_format, OF e2] |
391 from x[rule_format, OF e2] y[rule_format, OF e2] |
326 obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast |
392 obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" |
327 {fix n assume nN12: "n \<ge> N1 + N2" |
393 and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast |
328 hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+ |
394 { |
|
395 fix n |
|
396 assume nN12: "n \<ge> N1 + N2" |
|
397 then have nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" |
|
398 using seq_suble[OF g(1), of n] by arith+ |
329 from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]] |
399 from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]] |
330 have "cmod (s (?h n) - ?w) < e" |
400 have "cmod (s (?h n) - ?w) < e" |
331 using metric_bound_lemma[of "s (f (g n))" ?w] by simp } |
401 using metric_bound_lemma[of "s (f (g n))" ?w] by simp |
332 hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast } |
402 } |
333 with hs show ?thesis by blast |
403 then have "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast |
|
404 } |
|
405 with hs show ?thesis by blast |
334 qed |
406 qed |
335 |
407 |
336 text{* Polynomial is continuous. *} |
408 text{* Polynomial is continuous. *} |
337 |
409 |
338 lemma poly_cont: |
410 lemma poly_cont: |
339 fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" |
411 fixes p :: "'a::{comm_semiring_0,real_normed_div_algebra} poly" |
340 assumes ep: "e > 0" |
412 assumes ep: "e > 0" |
341 shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e" |
413 shows "\<exists>d >0. \<forall>w. 0 < norm (w - z) \<and> norm (w - z) < d \<longrightarrow> norm (poly p w - poly p z) < e" |
342 proof- |
414 proof - |
343 obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)" |
415 obtain q where q: "degree q = degree p" "\<And>x. poly q x = poly p (z + x)" |
344 proof |
416 proof |
345 show "degree (offset_poly p z) = degree p" |
417 show "degree (offset_poly p z) = degree p" |
346 by (rule degree_offset_poly) |
418 by (rule degree_offset_poly) |
347 show "\<And>x. poly (offset_poly p z) x = poly p (z + x)" |
419 show "\<And>x. poly (offset_poly p z) x = poly p (z + x)" |
348 by (rule poly_offset_poly) |
420 by (rule poly_offset_poly) |
349 qed |
421 qed |
350 {fix w |
422 have th: "\<And>w. poly q (w - z) = poly p w" |
351 note q(2)[of "w - z", simplified]} |
423 using q(2)[of "w - z" for w] by simp |
352 note th = this |
|
353 show ?thesis unfolding th[symmetric] |
424 show ?thesis unfolding th[symmetric] |
354 proof(induct q) |
425 proof (induct q) |
355 case 0 thus ?case using ep by auto |
426 case 0 |
|
427 then show ?case |
|
428 using ep by auto |
356 next |
429 next |
357 case (pCons c cs) |
430 case (pCons c cs) |
358 from poly_bound_exists[of 1 "cs"] |
431 from poly_bound_exists[of 1 "cs"] |
359 obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" by blast |
432 obtain m where m: "m > 0" "\<And>z. norm z \<le> 1 \<Longrightarrow> norm (poly cs z) \<le> m" |
360 from ep m(1) have em0: "e/m > 0" by (simp add: field_simps) |
433 by blast |
361 have one0: "1 > (0::real)" by arith |
434 from ep m(1) have em0: "e/m > 0" |
|
435 by (simp add: field_simps) |
|
436 have one0: "1 > (0::real)" |
|
437 by arith |
362 from real_lbound_gt_zero[OF one0 em0] |
438 from real_lbound_gt_zero[OF one0 em0] |
363 obtain d where d: "d >0" "d < 1" "d < e / m" by blast |
439 obtain d where d: "d > 0" "d < 1" "d < e / m" |
364 from d(1,3) m(1) have dm: "d*m > 0" "d*m < e" |
440 by blast |
|
441 from d(1,3) m(1) have dm: "d * m > 0" "d * m < e" |
365 by (simp_all add: field_simps) |
442 by (simp_all add: field_simps) |
366 show ?case |
443 show ?case |
367 proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) |
444 proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) |
368 fix d w |
445 fix d w |
369 assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "norm (w-z) < d" |
446 assume H: "d > 0" "d < 1" "d < e/m" "w \<noteq> z" "norm (w - z) < d" |
370 hence d1: "norm (w-z) \<le> 1" "d \<ge> 0" by simp_all |
447 then have d1: "norm (w-z) \<le> 1" "d \<ge> 0" |
371 from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps) |
448 by simp_all |
372 from H have th: "norm (w-z) \<le> d" by simp |
449 from H(3) m(1) have dme: "d*m < e" |
373 from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme |
450 by (simp add: field_simps) |
374 show "norm (w - z) * norm (poly cs (w - z)) < e" by simp |
451 from H have th: "norm (w - z) \<le> d" |
375 qed |
452 by simp |
|
453 from mult_mono[OF th m(2)[OF d1(1)] d1(2) norm_ge_zero] dme |
|
454 show "norm (w - z) * norm (poly cs (w - z)) < e" |
|
455 by simp |
376 qed |
456 qed |
|
457 qed |
377 qed |
458 qed |
378 |
459 |
379 text{* Hence a polynomial attains minimum on a closed disc |
460 text{* Hence a polynomial attains minimum on a closed disc |
380 in the complex plane. *} |
461 in the complex plane. *} |
381 lemma poly_minimum_modulus_disc: |
462 lemma poly_minimum_modulus_disc: "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)" |
382 "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)" |
463 proof - |
383 proof- |
464 { |
384 {assume "\<not> r \<ge> 0" hence ?thesis |
465 assume "\<not> r \<ge> 0" |
385 by (metis norm_ge_zero order.trans)} |
466 then have ?thesis |
|
467 by (metis norm_ge_zero order.trans) |
|
468 } |
386 moreover |
469 moreover |
387 {assume rp: "r \<ge> 0" |
470 { |
388 from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp |
471 assume rp: "r \<ge> 0" |
389 hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" by blast |
472 from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" |
390 {fix x z |
473 by simp |
391 assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1" |
474 then have mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x" |
392 hence "- x < 0 " by arith |
475 by blast |
393 with H(2) norm_ge_zero[of "poly p z"] have False by simp } |
476 { |
394 then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast |
477 fix x z |
|
478 assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not> x < 1" |
|
479 then have "- x < 0 " |
|
480 by arith |
|
481 with H(2) norm_ge_zero[of "poly p z"] have False |
|
482 by simp |
|
483 } |
|
484 then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" |
|
485 by blast |
395 from real_sup_exists[OF mth1 mth2] obtain s where |
486 from real_sup_exists[OF mth1 mth2] obtain s where |
396 s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast |
487 s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow> y < s" by blast |
397 let ?m = "-s" |
488 let ?m = "- s" |
398 {fix y |
489 { |
399 from s[rule_format, of "-y"] have |
490 fix y |
400 "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" |
491 from s[rule_format, of "-y"] |
401 unfolding minus_less_iff[of y ] equation_minus_iff by blast } |
492 have "(\<exists>z x. cmod z \<le> r \<and> - (- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" |
|
493 unfolding minus_less_iff[of y ] equation_minus_iff by blast |
|
494 } |
402 note s1 = this[unfolded minus_minus] |
495 note s1 = this[unfolded minus_minus] |
403 from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m" |
496 from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m" |
404 by auto |
497 by auto |
405 {fix n::nat |
498 { |
|
499 fix n :: nat |
406 from s1[rule_format, of "?m + 1/real (Suc n)"] |
500 from s1[rule_format, of "?m + 1/real (Suc n)"] |
407 have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" |
501 have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" |
408 by simp} |
502 by simp |
409 hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" .. |
503 } |
|
504 then have th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" .. |
410 from choice[OF th] obtain g where |
505 from choice[OF th] obtain g where |
411 g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)" |
506 g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m + 1 /real(Suc n)" |
412 by blast |
507 by blast |
413 from bolzano_weierstrass_complex_disc[OF g(1)] |
508 from bolzano_weierstrass_complex_disc[OF g(1)] |
414 obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e" |
509 obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e" |
415 by blast |
510 by blast |
416 {fix w |
511 { |
|
512 fix w |
417 assume wr: "cmod w \<le> r" |
513 assume wr: "cmod w \<le> r" |
418 let ?e = "\<bar>cmod (poly p z) - ?m\<bar>" |
514 let ?e = "\<bar>cmod (poly p z) - ?m\<bar>" |
419 {assume e: "?e > 0" |
515 { |
420 hence e2: "?e/2 > 0" by simp |
516 assume e: "?e > 0" |
|
517 then have e2: "?e/2 > 0" by simp |
421 from poly_cont[OF e2, of z p] obtain d where |
518 from poly_cont[OF e2, of z p] obtain d where |
422 d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast |
519 d: "d > 0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" |
423 {fix w assume w: "cmod (w - z) < d" |
520 by blast |
|
521 { |
|
522 fix w |
|
523 assume w: "cmod (w - z) < d" |
424 have "cmod(poly p w - poly p z) < ?e / 2" |
524 have "cmod(poly p w - poly p z) < ?e / 2" |
425 using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)} |
525 using d(2)[rule_format, of w] w e by (cases "w = z") simp_all |
|
526 } |
426 note th1 = this |
527 note th1 = this |
427 |
528 |
428 from fz(2)[rule_format, OF d(1)] obtain N1 where |
529 from fz(2) d(1) obtain N1 where N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" |
429 N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast |
530 by blast |
430 from reals_Archimedean2[of "2/?e"] obtain N2::nat where |
531 from reals_Archimedean2[of "2/?e"] obtain N2 :: nat where N2: "2/?e < real N2" |
431 N2: "2/?e < real N2" by blast |
532 by blast |
432 have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2" |
533 have th2: "cmod (poly p (g (f (N1 + N2))) - poly p z) < ?e/2" |
433 using N1[rule_format, of "N1 + N2"] th1 by simp |
534 using N1[rule_format, of "N1 + N2"] th1 by simp |
434 {fix a b e2 m :: real |
535 { |
435 have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a |
536 fix a b e2 m :: real |
436 ==> False" by arith} |
537 have "a < e2 \<Longrightarrow> \<bar>b - m\<bar> < e2 \<Longrightarrow> 2 * e2 \<le> \<bar>b - m\<bar> + a \<Longrightarrow> False" |
437 note th0 = this |
538 by arith |
438 have ath: |
539 } |
439 "\<And>m x e. m <= x \<Longrightarrow> x < m + e ==> abs(x - m::real) < e" by arith |
540 note th0 = this |
440 from s1m[OF g(1)[rule_format]] |
541 have ath: "\<And>m x e::real. m \<le> x \<Longrightarrow> x < m + e \<Longrightarrow> \<bar>x - m\<bar> < e" |
441 have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" . |
542 by arith |
442 from seq_suble[OF fz(1), of "N1+N2"] |
543 from s1m[OF g(1)[rule_format]] have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" . |
443 have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp |
544 from seq_suble[OF fz(1), of "N1+N2"] |
444 have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0" |
545 have th00: "real (Suc (N1 + N2)) \<le> real (Suc (f (N1 + N2)))" |
445 using N2 by auto |
546 by simp |
446 from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp |
547 have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1 + N2)) > 0" |
447 from g(2)[rule_format, of "f (N1 + N2)"] |
548 using N2 by auto |
448 have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" . |
549 from frac_le[OF th000 th00] |
449 from order_less_le_trans[OF th01 th00] |
550 have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" |
450 have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" . |
551 by simp |
451 from N2 have "2/?e < real (Suc (N1 + N2))" by arith |
552 from g(2)[rule_format, of "f (N1 + N2)"] |
452 with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"] |
553 have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" . |
453 have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide) |
554 from order_less_le_trans[OF th01 th00] |
454 with ath[OF th31 th32] |
555 have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" . |
455 have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith |
556 from N2 have "2/?e < real (Suc (N1 + N2))" |
456 have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c" |
557 by arith |
457 by arith |
558 with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"] |
458 have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> |
559 have "?e/2 > 1/ real (Suc (N1 + N2))" |
459 \<le> cmod (poly p (g (f (N1 + N2))) - poly p z)" |
560 by (simp add: inverse_eq_divide) |
460 by (simp add: norm_triangle_ineq3) |
561 with ath[OF th31 th32] |
461 from ath2[OF th22, of ?m] |
562 have thc1: "\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> < ?e/2" |
462 have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp |
563 by arith |
463 from th0[OF th2 thc1 thc2] have False .} |
564 have ath2: "\<And>a b c m::real. \<bar>a - b\<bar> \<le> c \<Longrightarrow> \<bar>b - m\<bar> \<le> \<bar>a - m\<bar> + c" |
464 hence "?e = 0" by auto |
565 by arith |
465 then have "cmod (poly p z) = ?m" by simp |
566 have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar> \<le> |
466 with s1m[OF wr] |
567 cmod (poly p (g (f (N1 + N2))) - poly p z)" |
467 have "cmod (poly p z) \<le> cmod (poly p w)" by simp } |
568 by (simp add: norm_triangle_ineq3) |
468 hence ?thesis by blast} |
569 from ath2[OF th22, of ?m] |
|
570 have thc2: "2 * (?e/2) \<le> |
|
571 \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" |
|
572 by simp |
|
573 from th0[OF th2 thc1 thc2] have False . |
|
574 } |
|
575 then have "?e = 0" |
|
576 by auto |
|
577 then have "cmod (poly p z) = ?m" |
|
578 by simp |
|
579 with s1m[OF wr] have "cmod (poly p z) \<le> cmod (poly p w)" |
|
580 by simp |
|
581 } |
|
582 then have ?thesis by blast |
|
583 } |
469 ultimately show ?thesis by blast |
584 ultimately show ?thesis by blast |
470 qed |
585 qed |
471 |
586 |
472 lemma "(rcis (sqrt (abs r)) (a/2))\<^sup>2 = rcis (abs r) a" |
587 lemma "(rcis (sqrt (abs r)) (a/2))\<^sup>2 = rcis (abs r) a" |
473 unfolding power2_eq_square |
588 unfolding power2_eq_square |
474 apply (simp add: rcis_mult) |
589 apply (simp add: rcis_mult) |
475 apply (simp add: power2_eq_square[symmetric]) |
590 apply (simp add: power2_eq_square[symmetric]) |
476 done |
591 done |
477 |
592 |
478 lemma cispi: "cis pi = -1" |
593 lemma cispi: "cis pi = -1" |
479 unfolding cis_def |
594 by (simp add: cis_def) |
480 by simp |
|
481 |
595 |
482 lemma "(rcis (sqrt (abs r)) ((pi + a)/2))\<^sup>2 = rcis (- abs r) a" |
596 lemma "(rcis (sqrt (abs r)) ((pi + a)/2))\<^sup>2 = rcis (- abs r) a" |
483 unfolding power2_eq_square |
597 unfolding power2_eq_square |
484 apply (simp add: rcis_mult add_divide_distrib) |
598 apply (simp add: rcis_mult add_divide_distrib) |
485 apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric]) |
599 apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric]) |
486 done |
600 done |
487 |
601 |
488 text {* Nonzero polynomial in z goes to infinity as z does. *} |
602 text {* Nonzero polynomial in z goes to infinity as z does. *} |
489 |
603 |
490 lemma poly_infinity: |
604 lemma poly_infinity: |
491 fixes p:: "('a::{comm_semiring_0,real_normed_div_algebra}) poly" |
605 fixes p:: "'a::{comm_semiring_0,real_normed_div_algebra} poly" |
492 assumes ex: "p \<noteq> 0" |
606 assumes ex: "p \<noteq> 0" |
493 shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)" |
607 shows "\<exists>r. \<forall>z. r \<le> norm z \<longrightarrow> d \<le> norm (poly (pCons a p) z)" |
494 using ex |
608 using ex |
495 proof(induct p arbitrary: a d) |
609 proof (induct p arbitrary: a d) |
496 case (pCons c cs a d) |
610 case (pCons c cs a d) |
497 {assume H: "cs \<noteq> 0" |
611 { |
498 with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)" by blast |
612 assume H: "cs \<noteq> 0" |
|
613 with pCons.hyps obtain r where r: "\<forall>z. r \<le> norm z \<longrightarrow> d + norm a \<le> norm (poly (pCons c cs) z)" |
|
614 by blast |
499 let ?r = "1 + \<bar>r\<bar>" |
615 let ?r = "1 + \<bar>r\<bar>" |
500 {fix z::'a assume h: "1 + \<bar>r\<bar> \<le> norm z" |
616 { |
|
617 fix z::'a |
|
618 assume h: "1 + \<bar>r\<bar> \<le> norm z" |
501 have r0: "r \<le> norm z" using h by arith |
619 have r0: "r \<le> norm z" using h by arith |
502 from r[rule_format, OF r0] |
620 from r[rule_format, OF r0] have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)" |
503 have th0: "d + norm a \<le> 1 * norm(poly (pCons c cs) z)" by arith |
621 by arith |
504 from h have z1: "norm z \<ge> 1" by arith |
622 from h have z1: "norm z \<ge> 1" |
|
623 by arith |
505 from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]] |
624 from order_trans[OF th0 mult_right_mono[OF z1 norm_ge_zero[of "poly (pCons c cs) z"]]] |
506 have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a" |
625 have th1: "d \<le> norm(z * poly (pCons c cs) z) - norm a" |
507 unfolding norm_mult by (simp add: algebra_simps) |
626 unfolding norm_mult by (simp add: algebra_simps) |
508 from norm_diff_ineq[of "z * poly (pCons c cs) z" a] |
627 from norm_diff_ineq[of "z * poly (pCons c cs) z" a] |
509 have th2: "norm(z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)" |
628 have th2: "norm(z * poly (pCons c cs) z) - norm a \<le> norm (poly (pCons a (pCons c cs)) z)" |
510 by (simp add: algebra_simps) |
629 by (simp add: algebra_simps) |
511 from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)" by arith} |
630 from th1 th2 have "d \<le> norm (poly (pCons a (pCons c cs)) z)" by arith |
512 hence ?case by blast} |
631 } |
|
632 then have ?case by blast |
|
633 } |
513 moreover |
634 moreover |
514 {assume cs0: "\<not> (cs \<noteq> 0)" |
635 { |
515 with pCons.prems have c0: "c \<noteq> 0" by simp |
636 assume cs0: "\<not> (cs \<noteq> 0)" |
516 from cs0 have cs0': "cs = 0" by simp |
637 with pCons.prems have c0: "c \<noteq> 0" |
517 {fix z::'a |
638 by simp |
|
639 from cs0 have cs0': "cs = 0" |
|
640 by simp |
|
641 { |
|
642 fix z::'a |
518 assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" |
643 assume h: "(\<bar>d\<bar> + norm a) / norm c \<le> norm z" |
519 from c0 have "norm c > 0" by simp |
644 from c0 have "norm c > 0" |
|
645 by simp |
520 from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)" |
646 from h c0 have th0: "\<bar>d\<bar> + norm a \<le> norm (z * c)" |
521 by (simp add: field_simps norm_mult) |
647 by (simp add: field_simps norm_mult) |
522 have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith |
648 have ath: "\<And>mzh mazh ma. mzh \<le> mazh + ma \<Longrightarrow> \<bar>d\<bar> + ma \<le> mzh \<Longrightarrow> d \<le> mazh" |
523 from norm_diff_ineq[of "z * c" a ] |
649 by arith |
524 have th1: "norm (z * c) \<le> norm (a + z * c) + norm a" |
650 from norm_diff_ineq[of "z * c" a] have th1: "norm (z * c) \<le> norm (a + z * c) + norm a" |
525 by (simp add: algebra_simps) |
651 by (simp add: algebra_simps) |
526 from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)" |
652 from ath[OF th1 th0] have "d \<le> norm (poly (pCons a (pCons c cs)) z)" |
527 using cs0' by simp} |
653 using cs0' by simp |
528 then have ?case by blast} |
654 } |
|
655 then have ?case by blast |
|
656 } |
529 ultimately show ?case by blast |
657 ultimately show ?case by blast |
530 qed simp |
658 qed simp |
531 |
659 |
532 text {* Hence polynomial's modulus attains its minimum somewhere. *} |
660 text {* Hence polynomial's modulus attains its minimum somewhere. *} |
533 lemma poly_minimum_modulus: |
661 lemma poly_minimum_modulus: "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)" |
534 "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)" |
662 proof (induct p) |
535 proof(induct p) |
663 case 0 |
|
664 then show ?case by simp |
|
665 next |
536 case (pCons c cs) |
666 case (pCons c cs) |
537 {assume cs0: "cs \<noteq> 0" |
667 show ?case |
538 from poly_infinity[OF cs0, of "cmod (poly (pCons c cs) 0)" c] |
668 proof (cases "cs = 0") |
539 obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" by blast |
669 case False |
540 have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith |
670 from poly_infinity[OF False, of "cmod (poly (pCons c cs) 0)" c] |
|
671 obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (pCons c cs) 0) \<le> cmod (poly (pCons c cs) z)" |
|
672 by blast |
|
673 have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" |
|
674 by arith |
541 from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"] |
675 from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "pCons c cs"] |
542 obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" by blast |
676 obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) w)" |
543 {fix z assume z: "r \<le> cmod z" |
677 by blast |
544 from v[of 0] r[OF z] |
678 { |
545 have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" |
679 fix z |
546 by simp } |
680 assume z: "r \<le> cmod z" |
|
681 from v[of 0] r[OF z] have "cmod (poly (pCons c cs) v) \<le> cmod (poly (pCons c cs) z)" |
|
682 by simp |
|
683 } |
547 note v0 = this |
684 note v0 = this |
548 from v0 v ath[of r] have ?case by blast} |
685 from v0 v ath[of r] show ?thesis |
549 moreover |
686 by blast |
550 {assume cs0: "\<not> (cs \<noteq> 0)" |
687 next |
551 hence th:"cs = 0" by simp |
688 case True |
552 from th pCons.hyps have ?case by simp} |
689 with pCons.hyps show ?thesis by simp |
553 ultimately show ?case by blast |
690 qed |
554 qed simp |
691 qed |
555 |
692 |
556 text{* Constant function (non-syntactic characterization). *} |
693 text{* Constant function (non-syntactic characterization). *} |
557 definition "constant f = (\<forall>x y. f x = f y)" |
694 definition "constant f = (\<forall>x y. f x = f y)" |
558 |
695 |
559 lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> psize p \<ge> 2" |
696 lemma nonconstant_length: "\<not> constant (poly p) \<Longrightarrow> psize p \<ge> 2" |
560 unfolding constant_def psize_def |
697 by (induct p) (auto simp: constant_def psize_def) |
561 apply (induct p, auto) |
|
562 done |
|
563 |
698 |
564 lemma poly_replicate_append: |
699 lemma poly_replicate_append: |
565 "poly (monom 1 n * p) (x::'a::{comm_ring_1}) = x^n * poly p x" |
700 "poly (monom 1 n * p) (x::'a::{comm_ring_1}) = x^n * poly p x" |
566 by (simp add: poly_monom) |
701 by (simp add: poly_monom) |
567 |
702 |
568 text {* Decomposition of polynomial, skipping zero coefficients |
703 text {* Decomposition of polynomial, skipping zero coefficients |
569 after the first. *} |
704 after the first. *} |
570 |
705 |
571 lemma poly_decompose_lemma: |
706 lemma poly_decompose_lemma: |
572 assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{idom}))" |
707 assumes nz: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly p z = (0::'a::idom))" |
573 shows "\<exists>k a q. a\<noteq>0 \<and> Suc (psize q + k) = psize p \<and> |
708 shows "\<exists>k a q. a \<noteq> 0 \<and> Suc (psize q + k) = psize p \<and> |
574 (\<forall>z. poly p z = z^k * poly (pCons a q) z)" |
709 (\<forall>z. poly p z = z^k * poly (pCons a q) z)" |
575 unfolding psize_def |
710 unfolding psize_def |
576 using nz |
711 using nz |
577 proof(induct p) |
712 proof (induct p) |
578 case 0 thus ?case by simp |
713 case 0 |
|
714 then show ?case by simp |
579 next |
715 next |
580 case (pCons c cs) |
716 case (pCons c cs) |
581 {assume c0: "c = 0" |
717 show ?case |
582 from pCons.hyps pCons.prems c0 have ?case |
718 proof (cases "c = 0") |
|
719 case True |
|
720 from pCons.hyps pCons.prems True show ?thesis |
583 apply (auto) |
721 apply (auto) |
584 apply (rule_tac x="k+1" in exI) |
722 apply (rule_tac x="k+1" in exI) |
585 apply (rule_tac x="a" in exI, clarsimp) |
723 apply (rule_tac x="a" in exI, clarsimp) |
586 apply (rule_tac x="q" in exI) |
724 apply (rule_tac x="q" in exI) |
587 by (auto)} |
725 apply auto |
588 moreover |
726 done |
589 {assume c0: "c\<noteq>0" |
727 next |
590 have ?case |
728 case False |
|
729 show ?thesis |
591 apply (rule exI[where x=0]) |
730 apply (rule exI[where x=0]) |
592 apply (rule exI[where x=c], auto simp add: c0) |
731 apply (rule exI[where x=c], auto simp add: False) |
593 done} |
732 done |
594 ultimately show ?case by blast |
733 qed |
595 qed |
734 qed |
596 |
735 |
597 lemma poly_decompose: |
736 lemma poly_decompose: |
598 assumes nc: "\<not> constant (poly p)" |
737 assumes nc: "\<not> constant (poly p)" |
599 shows "\<exists>k a q. a \<noteq> (0::'a::{idom}) \<and> k \<noteq> 0 \<and> |
738 shows "\<exists>k a q. a \<noteq> (0::'a::idom) \<and> k \<noteq> 0 \<and> |
600 psize q + k + 1 = psize p \<and> |
739 psize q + k + 1 = psize p \<and> |
601 (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)" |
740 (\<forall>z. poly p z = poly p 0 + z^k * poly (pCons a q) z)" |
602 using nc |
741 using nc |
603 proof (induct p) |
742 proof (induct p) |
604 case 0 |
743 case 0 |
639 let ?ths = "\<exists>z. ?p z = 0" |
779 let ?ths = "\<exists>z. ?p z = 0" |
640 |
780 |
641 from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" . |
781 from nonconstant_length[OF less(2)] have n2: "psize p \<ge> 2" . |
642 from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" |
782 from poly_minimum_modulus obtain c where c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" |
643 by blast |
783 by blast |
644 {assume pc: "?p c = 0" hence ?ths by blast} |
784 |
645 moreover |
785 show ?ths |
646 {assume pc0: "?p c \<noteq> 0" |
786 proof (cases "?p c = 0") |
647 from poly_offset[of p c] obtain q where |
787 case True |
648 q: "psize q = psize p" "\<forall>x. poly q x = ?p (c+x)" by blast |
788 then show ?thesis by blast |
649 {assume h: "constant (poly q)" |
789 next |
|
790 case False |
|
791 note pc0 = this |
|
792 from poly_offset[of p c] obtain q where q: "psize q = psize p" "\<forall>x. poly q x = ?p (c + x)" |
|
793 by blast |
|
794 { |
|
795 assume h: "constant (poly q)" |
650 from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto |
796 from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto |
651 {fix x y |
797 { |
|
798 fix x y |
652 from th have "?p x = poly q (x - c)" by auto |
799 from th have "?p x = poly q (x - c)" by auto |
653 also have "\<dots> = poly q (y - c)" |
800 also have "\<dots> = poly q (y - c)" |
654 using h unfolding constant_def by blast |
801 using h unfolding constant_def by blast |
655 also have "\<dots> = ?p y" using th by auto |
802 also have "\<dots> = ?p y" using th by auto |
656 finally have "?p x = ?p y" .} |
803 finally have "?p x = ?p y" . |
657 with less(2) have False unfolding constant_def by blast } |
804 } |
658 hence qnc: "\<not> constant (poly q)" by blast |
805 with less(2) have False |
659 from q(2) have pqc0: "?p c = poly q 0" by simp |
806 unfolding constant_def by blast |
660 from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp |
807 } |
|
808 then have qnc: "\<not> constant (poly q)" |
|
809 by blast |
|
810 from q(2) have pqc0: "?p c = poly q 0" |
|
811 by simp |
|
812 from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" |
|
813 by simp |
661 let ?a0 = "poly q 0" |
814 let ?a0 = "poly q 0" |
662 from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp |
815 from pc0 pqc0 have a00: "?a0 \<noteq> 0" |
663 from a00 |
816 by simp |
664 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0" |
817 from a00 have qr: "\<forall>z. poly q z = poly (smult (inverse ?a0) q) z * ?a0" |
665 by simp |
818 by simp |
666 let ?r = "smult (inverse ?a0) q" |
819 let ?r = "smult (inverse ?a0) q" |
667 have lgqr: "psize q = psize ?r" |
820 have lgqr: "psize q = psize ?r" |
668 using a00 unfolding psize_def degree_def |
821 using a00 |
|
822 unfolding psize_def degree_def |
669 by (simp add: poly_eq_iff) |
823 by (simp add: poly_eq_iff) |
670 {assume h: "\<And>x y. poly ?r x = poly ?r y" |
824 { |
671 {fix x y |
825 assume h: "\<And>x y. poly ?r x = poly ?r y" |
672 from qr[rule_format, of x] |
826 { |
673 have "poly q x = poly ?r x * ?a0" by auto |
827 fix x y |
674 also have "\<dots> = poly ?r y * ?a0" using h by simp |
828 from qr[rule_format, of x] have "poly q x = poly ?r x * ?a0" |
675 also have "\<dots> = poly q y" using qr[rule_format, of y] by simp |
829 by auto |
676 finally have "poly q x = poly q y" .} |
830 also have "\<dots> = poly ?r y * ?a0" |
677 with qnc have False unfolding constant_def by blast} |
831 using h by simp |
678 hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast |
832 also have "\<dots> = poly q y" |
679 from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" by auto |
833 using qr[rule_format, of y] by simp |
680 {fix w |
834 finally have "poly q x = poly q y" . |
|
835 } |
|
836 with qnc have False unfolding constant_def by blast |
|
837 } |
|
838 then have rnc: "\<not> constant (poly ?r)" |
|
839 unfolding constant_def by blast |
|
840 from qr[rule_format, of 0] a00 have r01: "poly ?r 0 = 1" |
|
841 by auto |
|
842 { |
|
843 fix w |
681 have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1" |
844 have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1" |
682 using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac) |
845 using qr[rule_format, of w] a00 by (simp add: divide_inverse mult_ac) |
683 also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0" |
846 also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0" |
684 using a00 unfolding norm_divide by (simp add: field_simps) |
847 using a00 unfolding norm_divide by (simp add: field_simps) |
685 finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .} |
848 finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" . |
|
849 } |
686 note mrmq_eq = this |
850 note mrmq_eq = this |
687 from poly_decompose[OF rnc] obtain k a s where |
851 from poly_decompose[OF rnc] obtain k a s where |
688 kas: "a\<noteq>0" "k\<noteq>0" "psize s + k + 1 = psize ?r" |
852 kas: "a \<noteq> 0" "k \<noteq> 0" "psize s + k + 1 = psize ?r" |
689 "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast |
853 "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (pCons a s) z" by blast |
690 {assume "psize p = k + 1" |
854 { |
691 with kas(3) lgqr[symmetric] q(1) have s0:"s=0" by auto |
855 assume "psize p = k + 1" |
692 {fix w |
856 with kas(3) lgqr[symmetric] q(1) have s0: "s = 0" |
|
857 by auto |
|
858 { |
|
859 fix w |
693 have "cmod (poly ?r w) = cmod (1 + a * w ^ k)" |
860 have "cmod (poly ?r w) = cmod (1 + a * w ^ k)" |
694 using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps)} |
861 using kas(4)[rule_format, of w] s0 r01 by (simp add: algebra_simps) |
|
862 } |
695 note hth = this [symmetric] |
863 note hth = this [symmetric] |
696 from reduce_poly_simple[OF kas(1,2)] |
864 from reduce_poly_simple[OF kas(1,2)] have "\<exists>w. cmod (poly ?r w) < 1" |
697 have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast} |
865 unfolding hth by blast |
|
866 } |
698 moreover |
867 moreover |
699 {assume kn: "psize p \<noteq> k+1" |
868 { |
700 from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" by simp |
869 assume kn: "psize p \<noteq> k + 1" |
|
870 from kn kas(3) q(1) lgqr have k1n: "k + 1 < psize p" |
|
871 by simp |
701 have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))" |
872 have th01: "\<not> constant (poly (pCons 1 (monom a (k - 1))))" |
702 unfolding constant_def poly_pCons poly_monom |
873 unfolding constant_def poly_pCons poly_monom |
703 using kas(1) apply simp |
874 using kas(1) apply simp |
704 by (rule exI[where x=0], rule exI[where x=1], simp) |
875 apply (rule exI[where x=0]) |
705 from kas(1) kas(2) have th02: "k+1 = psize (pCons 1 (monom a (k - 1)))" |
876 apply (rule exI[where x=1]) |
|
877 apply simp |
|
878 done |
|
879 from kas(1) kas(2) have th02: "k + 1 = psize (pCons 1 (monom a (k - 1)))" |
706 by (simp add: psize_def degree_monom_eq) |
880 by (simp add: psize_def degree_monom_eq) |
707 from less(1) [OF k1n [simplified th02] th01] |
881 from less(1) [OF k1n [simplified th02] th01] |
708 obtain w where w: "1 + w^k * a = 0" |
882 obtain w where w: "1 + w^k * a = 0" |
709 unfolding poly_pCons poly_monom |
883 unfolding poly_pCons poly_monom |
710 using kas(2) by (cases k, auto simp add: algebra_simps) |
884 using kas(2) by (cases k) (auto simp add: algebra_simps) |
711 from poly_bound_exists[of "cmod w" s] obtain m where |
885 from poly_bound_exists[of "cmod w" s] obtain m where |
712 m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast |
886 m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast |
713 have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left) |
887 have w0: "w \<noteq> 0" using kas(2) w |
714 from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp |
888 by (auto simp add: power_0_left) |
715 then have wm1: "w^k * a = - 1" by simp |
889 from w have "(1 + w ^ k * a) - 1 = 0 - 1" |
|
890 by simp |
|
891 then have wm1: "w^k * a = - 1" |
|
892 by simp |
716 have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" |
893 have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" |
717 using norm_ge_zero[of w] w0 m(1) |
894 using norm_ge_zero[of w] w0 m(1) |
718 by (simp add: inverse_eq_divide zero_less_mult_iff) |
895 by (simp add: inverse_eq_divide zero_less_mult_iff) |
719 with real_lbound_gt_zero[OF zero_less_one] obtain t where |
896 with real_lbound_gt_zero[OF zero_less_one] obtain t where |
720 t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast |
897 t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast |
721 let ?ct = "complex_of_real t" |
898 let ?ct = "complex_of_real t" |
722 let ?w = "?ct * w" |
899 let ?w = "?ct * w" |
723 have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: algebra_simps power_mult_distrib) |
900 have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" |
|
901 using kas(1) by (simp add: algebra_simps power_mult_distrib) |
724 also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w" |
902 also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w" |
725 unfolding wm1 by (simp) |
903 unfolding wm1 by simp |
726 finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)" |
904 finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = |
|
905 cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)" |
727 by metis |
906 by metis |
728 with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"] |
907 with norm_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"] |
729 have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding norm_of_real by simp |
908 have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" |
730 have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith |
909 unfolding norm_of_real by simp |
731 have "t * cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto |
910 have ath: "\<And>x t::real. 0 \<le> x \<Longrightarrow> x < t \<Longrightarrow> t \<le> 1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" |
732 then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: norm_mult) |
911 by arith |
733 from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1" |
912 have "t * cmod w \<le> 1 * cmod w" |
|
913 apply (rule mult_mono) |
|
914 using t(1,2) |
|
915 apply auto |
|
916 done |
|
917 then have tw: "cmod ?w \<le> cmod w" |
|
918 using t(1) by (simp add: norm_mult) |
|
919 from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1" |
734 by (simp add: inverse_eq_divide field_simps) |
920 by (simp add: inverse_eq_divide field_simps) |
735 with zero_less_power[OF t(1), of k] |
921 with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" |
736 have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" |
|
737 by (metis comm_mult_strict_left_mono) |
922 by (metis comm_mult_strict_left_mono) |
738 have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))" using w0 t(1) |
923 have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))" |
|
924 using w0 t(1) |
739 by (simp add: algebra_simps power_mult_distrib norm_power norm_mult) |
925 by (simp add: algebra_simps power_mult_distrib norm_power norm_mult) |
740 then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))" |
926 then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))" |
741 using t(1,2) m(2)[rule_format, OF tw] w0 |
927 using t(1,2) m(2)[rule_format, OF tw] w0 |
742 by auto |
928 by auto |
743 with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp |
929 with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" |
|
930 by simp |
744 from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1" |
931 from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1" |
745 by auto |
932 by auto |
746 from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121] |
933 from ath[OF norm_ge_zero[of "?w^k * ?w * poly s ?w"] th120 th121] |
747 have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" . |
934 have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" . |
748 from th11 th12 |
935 from th11 th12 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" |
749 have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1" by arith |
936 by arith |
750 then have "cmod (poly ?r ?w) < 1" |
937 then have "cmod (poly ?r ?w) < 1" |
751 unfolding kas(4)[rule_format, of ?w] r01 by simp |
938 unfolding kas(4)[rule_format, of ?w] r01 by simp |
752 then have "\<exists>w. cmod (poly ?r w) < 1" by blast} |
939 then have "\<exists>w. cmod (poly ?r w) < 1" |
753 ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast |
940 by blast |
754 from cr0_contr cq0 q(2) |
941 } |
755 have ?ths unfolding mrmq_eq not_less[symmetric] by auto} |
942 ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" |
756 ultimately show ?ths by blast |
943 by blast |
|
944 from cr0_contr cq0 q(2) show ?thesis |
|
945 unfolding mrmq_eq not_less[symmetric] by auto |
|
946 qed |
757 qed |
947 qed |
758 |
948 |
759 text {* Alternative version with a syntactic notion of constant polynomial. *} |
949 text {* Alternative version with a syntactic notion of constant polynomial. *} |
760 |
950 |
761 lemma fundamental_theorem_of_algebra_alt: |
951 lemma fundamental_theorem_of_algebra_alt: |
762 assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> l = 0 \<and> p = pCons a l)" |
952 assumes nc: "\<not> (\<exists>a l. a \<noteq> 0 \<and> l = 0 \<and> p = pCons a l)" |
763 shows "\<exists>z. poly p z = (0::complex)" |
953 shows "\<exists>z. poly p z = (0::complex)" |
764 using nc |
954 using nc |
765 proof(induct p) |
955 proof (induct p) |
|
956 case 0 |
|
957 then show ?case by simp |
|
958 next |
766 case (pCons c cs) |
959 case (pCons c cs) |
767 {assume "c=0" hence ?case by auto} |
960 show ?case |
768 moreover |
961 proof (cases "c = 0") |
769 {assume c0: "c\<noteq>0" |
962 case True |
770 {assume nc: "constant (poly (pCons c cs))" |
963 then show ?thesis by auto |
|
964 next |
|
965 case False |
|
966 { |
|
967 assume nc: "constant (poly (pCons c cs))" |
771 from nc[unfolded constant_def, rule_format, of 0] |
968 from nc[unfolded constant_def, rule_format, of 0] |
772 have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto |
969 have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto |
773 hence "cs = 0" |
970 then have "cs = 0" |
774 proof(induct cs) |
971 proof (induct cs) |
775 case (pCons d ds) |
972 case 0 |
776 {assume "d=0" hence ?case using pCons.prems pCons.hyps by simp} |
973 then show ?case by simp |
777 moreover |
974 next |
778 {assume d0: "d\<noteq>0" |
975 case (pCons d ds) |
779 from poly_bound_exists[of 1 ds] obtain m where |
976 show ?case |
780 m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast |
977 proof (cases "d = 0") |
781 have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps) |
978 case True |
782 from real_lbound_gt_zero[OF dm zero_less_one] obtain x where |
979 then show ?thesis using pCons.prems pCons.hyps by simp |
783 x: "x > 0" "x < cmod d / m" "x < 1" by blast |
980 next |
784 let ?x = "complex_of_real x" |
981 case False |
785 from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" by simp_all |
982 from poly_bound_exists[of 1 ds] obtain m where |
786 from pCons.prems[rule_format, OF cx(1)] |
983 m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast |
787 have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric]) |
984 have dm: "cmod d / m > 0" using False m(1) by (simp add: field_simps) |
788 from m(2)[rule_format, OF cx(2)] x(1) |
985 from real_lbound_gt_zero[OF dm zero_less_one] obtain x where |
789 have th0: "cmod (?x*poly ds ?x) \<le> x*m" |
986 x: "x > 0" "x < cmod d / m" "x < 1" by blast |
790 by (simp add: norm_mult) |
987 let ?x = "complex_of_real x" |
791 from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps) |
988 from x have cx: "?x \<noteq> 0" "cmod ?x \<le> 1" by simp_all |
792 with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto |
989 from pCons.prems[rule_format, OF cx(1)] |
793 with cth have ?case by blast} |
990 have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric]) |
794 ultimately show ?case by blast |
991 from m(2)[rule_format, OF cx(2)] x(1) |
795 qed simp} |
992 have th0: "cmod (?x*poly ds ?x) \<le> x*m" |
796 then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems c0 |
993 by (simp add: norm_mult) |
797 by blast |
994 from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps) |
798 from fundamental_theorem_of_algebra[OF nc] have ?case .} |
995 with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto |
799 ultimately show ?case by blast |
996 with cth show ?thesis by blast |
800 qed simp |
997 qed |
|
998 qed |
|
999 } |
|
1000 then have nc: "\<not> constant (poly (pCons c cs))" using pCons.prems False |
|
1001 by blast |
|
1002 from fundamental_theorem_of_algebra[OF nc] show ?thesis . |
|
1003 qed |
|
1004 qed |
801 |
1005 |
802 |
1006 |
803 subsection{* Nullstellensatz, degrees and divisibility of polynomials *} |
1007 subsection{* Nullstellensatz, degrees and divisibility of polynomials *} |
804 |
1008 |
805 lemma nullstellensatz_lemma: |
1009 lemma nullstellensatz_lemma: |
814 fix p q :: "complex poly" |
1018 fix p q :: "complex poly" |
815 assume IH: "\<forall>m<n. \<forall>p q. |
1019 assume IH: "\<forall>m<n. \<forall>p q. |
816 (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow> |
1020 (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow> |
817 degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)" |
1021 degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p dvd (q ^ m)" |
818 and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" |
1022 and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" |
819 and dpn: "degree p = n" and n0: "n \<noteq> 0" |
1023 and dpn: "degree p = n" |
|
1024 and n0: "n \<noteq> 0" |
820 from dpn n0 have pne: "p \<noteq> 0" by auto |
1025 from dpn n0 have pne: "p \<noteq> 0" by auto |
821 let ?ths = "p dvd (q ^ n)" |
1026 let ?ths = "p dvd (q ^ n)" |
822 {fix a assume a: "poly p a = 0" |
1027 { |
823 {assume oa: "order a p \<noteq> 0" |
1028 fix a |
|
1029 assume a: "poly p a = 0" |
|
1030 { |
|
1031 assume oa: "order a p \<noteq> 0" |
824 let ?op = "order a p" |
1032 let ?op = "order a p" |
825 from pne have ap: "([:- a, 1:] ^ ?op) dvd p" |
1033 from pne have ap: "([:- a, 1:] ^ ?op) dvd p" "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" |
826 "\<not> [:- a, 1:] ^ (Suc ?op) dvd p" using order by blast+ |
1034 using order by blast+ |
827 note oop = order_degree[OF pne, unfolded dpn] |
1035 note oop = order_degree[OF pne, unfolded dpn] |
828 {assume q0: "q = 0" |
1036 { |
829 hence ?ths using n0 |
1037 assume q0: "q = 0" |
830 by (simp add: power_0_left)} |
1038 then have ?ths using n0 |
|
1039 by (simp add: power_0_left) |
|
1040 } |
831 moreover |
1041 moreover |
832 {assume q0: "q \<noteq> 0" |
1042 { |
|
1043 assume q0: "q \<noteq> 0" |
833 from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd] |
1044 from pq0[rule_format, OF a, unfolded poly_eq_0_iff_dvd] |
834 obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE) |
1045 obtain r where r: "q = [:- a, 1:] * r" by (rule dvdE) |
835 from ap(1) obtain s where |
1046 from ap(1) obtain s where s: "p = [:- a, 1:] ^ ?op * s" |
836 s: "p = [:- a, 1:] ^ ?op * s" by (rule dvdE) |
1047 by (rule dvdE) |
837 have sne: "s \<noteq> 0" |
1048 have sne: "s \<noteq> 0" using s pne by auto |
838 using s pne by auto |
1049 { |
839 {assume ds0: "degree s = 0" |
1050 assume ds0: "degree s = 0" |
840 from ds0 obtain k where kpn: "s = [:k:]" |
1051 from ds0 obtain k where kpn: "s = [:k:]" |
841 by (cases s) (auto split: if_splits) |
1052 by (cases s) (auto split: if_splits) |
842 from sne kpn have k: "k \<noteq> 0" by simp |
1053 from sne kpn have k: "k \<noteq> 0" by simp |
843 let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)" |
1054 let ?w = "([:1/k:] * ([:-a,1:] ^ (n - ?op))) * (r ^ n)" |
844 have "q ^ n = p * ?w" |
1055 have "q ^ n = p * ?w" |
845 apply (subst r, subst s, subst kpn) |
1056 apply (subst r, subst s, subst kpn) |
846 using k oop [of a] |
1057 using k oop [of a] |
847 apply (subst power_mult_distrib, simp) |
1058 apply (subst power_mult_distrib, simp) |
848 apply (subst power_add [symmetric], simp) |
1059 apply (subst power_add [symmetric], simp) |
849 done |
1060 done |
850 hence ?ths unfolding dvd_def by blast} |
1061 then have ?ths unfolding dvd_def by blast |
|
1062 } |
851 moreover |
1063 moreover |
852 {assume ds0: "degree s \<noteq> 0" |
1064 { |
|
1065 assume ds0: "degree s \<noteq> 0" |
853 from ds0 sne dpn s oa |
1066 from ds0 sne dpn s oa |
854 have dsn: "degree s < n" apply auto |
1067 have dsn: "degree s < n" |
|
1068 apply auto |
855 apply (erule ssubst) |
1069 apply (erule ssubst) |
856 apply (simp add: degree_mult_eq degree_linear_power) |
1070 apply (simp add: degree_mult_eq degree_linear_power) |
857 done |
1071 done |
858 {fix x assume h: "poly s x = 0" |
1072 { |
859 {assume xa: "x = a" |
1073 fix x assume h: "poly s x = 0" |
860 from h[unfolded xa poly_eq_0_iff_dvd] obtain u where |
1074 { |
861 u: "s = [:- a, 1:] * u" by (rule dvdE) |
1075 assume xa: "x = a" |
|
1076 from h[unfolded xa poly_eq_0_iff_dvd] obtain u where u: "s = [:- a, 1:] * u" |
|
1077 by (rule dvdE) |
862 have "p = [:- a, 1:] ^ (Suc ?op) * u" |
1078 have "p = [:- a, 1:] ^ (Suc ?op) * u" |
863 by (subst s, subst u, simp only: power_Suc mult_ac) |
1079 by (subst s, subst u, simp only: power_Suc mult_ac) |
864 with ap(2)[unfolded dvd_def] have False by blast} |
1080 with ap(2)[unfolded dvd_def] have False by blast |
|
1081 } |
865 note xa = this |
1082 note xa = this |
866 from h have "poly p x = 0" by (subst s, simp) |
1083 from h have "poly p x = 0" by (subst s) simp |
867 with pq0 have "poly q x = 0" by blast |
1084 with pq0 have "poly q x = 0" by blast |
868 with r xa have "poly r x = 0" |
1085 with r xa have "poly r x = 0" |
869 by auto} |
1086 by auto |
|
1087 } |
870 note impth = this |
1088 note impth = this |
871 from IH[rule_format, OF dsn, of s r] impth ds0 |
1089 from IH[rule_format, OF dsn, of s r] impth ds0 |
872 have "s dvd (r ^ (degree s))" by blast |
1090 have "s dvd (r ^ (degree s))" by blast |
873 then obtain u where u: "r ^ (degree s) = s * u" .. |
1091 then obtain u where u: "r ^ (degree s) = s * u" .. |
874 hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s" |
1092 then have u': "\<And>x. poly s x * poly u x = poly r x ^ degree s" |
875 by (simp only: poly_mult[symmetric] poly_power[symmetric]) |
1093 by (simp only: poly_mult[symmetric] poly_power[symmetric]) |
876 let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))" |
1094 let ?w = "(u * ([:-a,1:] ^ (n - ?op))) * (r ^ (n - degree s))" |
877 from oop[of a] dsn have "q ^ n = p * ?w" |
1095 from oop[of a] dsn have "q ^ n = p * ?w" |
878 apply - |
1096 apply - |
879 apply (subst s, subst r) |
1097 apply (subst s, subst r) |