equal
deleted
inserted
replaced
203 *} |
203 *} |
204 |
204 |
205 interpretation %quote fun_power: power "\<lambda>n (f :: 'a \<Rightarrow> 'a). f ^^ n" where |
205 interpretation %quote fun_power: power "\<lambda>n (f :: 'a \<Rightarrow> 'a). f ^^ n" where |
206 "power.powers (\<lambda>n f. f ^^ n) = funpows" |
206 "power.powers (\<lambda>n f. f ^^ n) = funpows" |
207 by unfold_locales |
207 by unfold_locales |
208 (simp_all add: fun_eq_iff funpow_mult mult_commute funpows_def) |
208 (simp_all add: fun_eq_iff funpow_mult mult.commute funpows_def) |
209 |
209 |
210 text {* |
210 text {* |
211 \noindent This additional equation is trivially proved by the |
211 \noindent This additional equation is trivially proved by the |
212 definition itself. |
212 definition itself. |
213 |
213 |