NEWS
changeset 47448 cd3d987e8e79
parent 47427 0daa97ed1585
child 47453 598604c91036
equal deleted inserted replaced
47447:22e64252eb35 47448:cd3d987e8e79
   290   rel_pow_finite_bounded ~> relpow_finite_bounded
   290   rel_pow_finite_bounded ~> relpow_finite_bounded
   291   rtrancl_finite_eq_rel_pow ~> rtrancl_finite_eq_relpow
   291   rtrancl_finite_eq_rel_pow ~> rtrancl_finite_eq_relpow
   292   trancl_finite_eq_rel_pow ~> trancl_finite_eq_relpow
   292   trancl_finite_eq_rel_pow ~> trancl_finite_eq_relpow
   293   single_valued_rel_pow ~> single_valued_relpow
   293   single_valued_rel_pow ~> single_valued_relpow
   294  
   294  
       
   295 INCOMPATIBILITY.
       
   296 
       
   297 * Theory Relation: Consolidated constant name for relation composition
       
   298   and corresponding theorem names:
       
   299   - Renamed constant rel_comp to relcomp
       
   300   - Dropped abbreviation pred_comp. Use relcompp instead.
       
   301   - Renamed theorems:
       
   302   Relation:
       
   303     rel_compI ~> relcompI
       
   304     rel_compEpair ~> relcompEpair
       
   305     rel_compE ~> relcompE
       
   306     pred_comp_rel_comp_eq ~> relcompp_relcomp_eq
       
   307     rel_comp_empty1 ~> relcomp_empty1
       
   308     rel_comp_mono ~> relcomp_mono
       
   309     rel_comp_subset_Sigma ~> relcomp_subset_Sigma
       
   310     rel_comp_distrib ~> relcomp_distrib
       
   311     rel_comp_distrib2 ~> relcomp_distrib2
       
   312     rel_comp_UNION_distrib ~> relcomp_UNION_distrib
       
   313     rel_comp_UNION_distrib2 ~> relcomp_UNION_distrib2
       
   314     single_valued_rel_comp ~> single_valued_relcomp
       
   315     rel_comp_unfold ~> relcomp_unfold
       
   316     converse_rel_comp ~> converse_relcomp
       
   317     pred_compI ~> relcomppI
       
   318     pred_compE ~> relcomppE
       
   319     pred_comp_bot1 ~> relcompp_bot1
       
   320     pred_comp_bot2 ~> relcompp_bot2
       
   321     transp_pred_comp_less_eq ~> transp_relcompp_less_eq
       
   322     pred_comp_mono ~> relcompp_mono
       
   323     pred_comp_distrib ~> relcompp_distrib
       
   324     pred_comp_distrib2 ~> relcompp_distrib2
       
   325     converse_pred_comp ~> converse_relcompp
       
   326   Transitive_Closure:
       
   327     finite_rel_comp ~> finite_relcomp
       
   328   List:
       
   329     set_rel_comp ~> set_relcomp
       
   330 
   295 INCOMPATIBILITY.
   331 INCOMPATIBILITY.
   296 
   332 
   297 * New theory HOL/Library/DAList provides an abstract type for association
   333 * New theory HOL/Library/DAList provides an abstract type for association
   298   lists with distinct keys.
   334   lists with distinct keys.
   299 
   335