13 definition (in prob_space) |
13 definition (in prob_space) |
14 "conditional_expectation N X = (SOME Y. Y\<in>borel_measurable N \<and> (\<forall>x. 0 \<le> Y x) |
14 "conditional_expectation N X = (SOME Y. Y\<in>borel_measurable N \<and> (\<forall>x. 0 \<le> Y x) |
15 \<and> (\<forall>C\<in>sets N. (\<integral>\<^isup>+x. Y x * indicator C x\<partial>M) = (\<integral>\<^isup>+x. X x * indicator C x\<partial>M)))" |
15 \<and> (\<forall>C\<in>sets N. (\<integral>\<^isup>+x. Y x * indicator C x\<partial>M) = (\<integral>\<^isup>+x. X x * indicator C x\<partial>M)))" |
16 |
16 |
17 lemma (in prob_space) conditional_expectation_exists: |
17 lemma (in prob_space) conditional_expectation_exists: |
18 fixes X :: "'a \<Rightarrow> extreal" and N :: "('a, 'b) measure_space_scheme" |
18 fixes X :: "'a \<Rightarrow> ereal" and N :: "('a, 'b) measure_space_scheme" |
19 assumes borel: "X \<in> borel_measurable M" "AE x. 0 \<le> X x" |
19 assumes borel: "X \<in> borel_measurable M" "AE x. 0 \<le> X x" |
20 and N: "sigma_algebra N" "sets N \<subseteq> sets M" "space N = space M" "\<And>A. measure N A = \<mu> A" |
20 and N: "sigma_algebra N" "sets N \<subseteq> sets M" "space N = space M" "\<And>A. measure N A = \<mu> A" |
21 shows "\<exists>Y\<in>borel_measurable N. (\<forall>x. 0 \<le> Y x) \<and> (\<forall>C\<in>sets N. |
21 shows "\<exists>Y\<in>borel_measurable N. (\<forall>x. 0 \<le> Y x) \<and> (\<forall>C\<in>sets N. |
22 (\<integral>\<^isup>+x. Y x * indicator C x \<partial>M) = (\<integral>\<^isup>+x. X x * indicator C x \<partial>M))" |
22 (\<integral>\<^isup>+x. Y x * indicator C x \<partial>M) = (\<integral>\<^isup>+x. X x * indicator C x \<partial>M))" |
23 proof - |
23 proof - |
50 with N(2) show ?thesis |
50 with N(2) show ?thesis |
51 by (auto intro!: bexI[OF _ Y(1)] simp: positive_integral_subalgebra[OF _ _ N(2,3,4,1)]) |
51 by (auto intro!: bexI[OF _ Y(1)] simp: positive_integral_subalgebra[OF _ _ N(2,3,4,1)]) |
52 qed |
52 qed |
53 |
53 |
54 lemma (in prob_space) |
54 lemma (in prob_space) |
55 fixes X :: "'a \<Rightarrow> extreal" and N :: "('a, 'b) measure_space_scheme" |
55 fixes X :: "'a \<Rightarrow> ereal" and N :: "('a, 'b) measure_space_scheme" |
56 assumes borel: "X \<in> borel_measurable M" "AE x. 0 \<le> X x" |
56 assumes borel: "X \<in> borel_measurable M" "AE x. 0 \<le> X x" |
57 and N: "sigma_algebra N" "sets N \<subseteq> sets M" "space N = space M" "\<And>A. measure N A = \<mu> A" |
57 and N: "sigma_algebra N" "sets N \<subseteq> sets M" "space N = space M" "\<And>A. measure N A = \<mu> A" |
58 shows borel_measurable_conditional_expectation: |
58 shows borel_measurable_conditional_expectation: |
59 "conditional_expectation N X \<in> borel_measurable N" |
59 "conditional_expectation N X \<in> borel_measurable N" |
60 and conditional_expectation: "\<And>C. C \<in> sets N \<Longrightarrow> |
60 and conditional_expectation: "\<And>C. C \<in> sets N \<Longrightarrow> |
69 from CE show "\<And>C. C \<in> sets N \<Longrightarrow> ?eq C" |
69 from CE show "\<And>C. C \<in> sets N \<Longrightarrow> ?eq C" |
70 unfolding conditional_expectation_def by (rule someI2_ex) blast |
70 unfolding conditional_expectation_def by (rule someI2_ex) blast |
71 qed |
71 qed |
72 |
72 |
73 lemma (in sigma_algebra) factorize_measurable_function_pos: |
73 lemma (in sigma_algebra) factorize_measurable_function_pos: |
74 fixes Z :: "'a \<Rightarrow> extreal" and Y :: "'a \<Rightarrow> 'c" |
74 fixes Z :: "'a \<Rightarrow> ereal" and Y :: "'a \<Rightarrow> 'c" |
75 assumes "sigma_algebra M'" and "Y \<in> measurable M M'" "Z \<in> borel_measurable M" |
75 assumes "sigma_algebra M'" and "Y \<in> measurable M M'" "Z \<in> borel_measurable M" |
76 assumes Z: "Z \<in> borel_measurable (sigma_algebra.vimage_algebra M' (space M) Y)" |
76 assumes Z: "Z \<in> borel_measurable (sigma_algebra.vimage_algebra M' (space M) Y)" |
77 shows "\<exists>g\<in>borel_measurable M'. \<forall>x\<in>space M. max 0 (Z x) = g (Y x)" |
77 shows "\<exists>g\<in>borel_measurable M'. \<forall>x\<in>space M. max 0 (Z x) = g (Y x)" |
78 proof - |
78 proof - |
79 interpret M': sigma_algebra M' by fact |
79 interpret M': sigma_algebra M' by fact |
96 show "\<exists>g. simple_function M' g \<and> (\<forall>x\<in>space M. f i x = g (Y x))" |
96 show "\<exists>g. simple_function M' g \<and> (\<forall>x\<in>space M. f i x = g (Y x))" |
97 proof (intro exI[of _ ?g] conjI ballI) |
97 proof (intro exI[of _ ?g] conjI ballI) |
98 show "simple_function M' ?g" using B by auto |
98 show "simple_function M' ?g" using B by auto |
99 |
99 |
100 fix x assume "x \<in> space M" |
100 fix x assume "x \<in> space M" |
101 then have "\<And>z. z \<in> f i`space M \<Longrightarrow> indicator (B z) (Y x) = (indicator (f i -` {z} \<inter> space M) x::extreal)" |
101 then have "\<And>z. z \<in> f i`space M \<Longrightarrow> indicator (B z) (Y x) = (indicator (f i -` {z} \<inter> space M) x::ereal)" |
102 unfolding indicator_def using B by auto |
102 unfolding indicator_def using B by auto |
103 then show "f i x = ?g (Y x)" using `x \<in> space M` f(1)[of i] |
103 then show "f i x = ?g (Y x)" using `x \<in> space M` f(1)[of i] |
104 by (subst va.simple_function_indicator_representation) auto |
104 by (subst va.simple_function_indicator_representation) auto |
105 qed |
105 qed |
106 qed |
106 qed |
117 finally show "max 0 (Z x) = (SUP i. g i (Y x))" . |
117 finally show "max 0 (Z x) = (SUP i. g i (Y x))" . |
118 qed |
118 qed |
119 qed |
119 qed |
120 |
120 |
121 lemma (in sigma_algebra) factorize_measurable_function: |
121 lemma (in sigma_algebra) factorize_measurable_function: |
122 fixes Z :: "'a \<Rightarrow> extreal" and Y :: "'a \<Rightarrow> 'c" |
122 fixes Z :: "'a \<Rightarrow> ereal" and Y :: "'a \<Rightarrow> 'c" |
123 assumes "sigma_algebra M'" and "Y \<in> measurable M M'" "Z \<in> borel_measurable M" |
123 assumes "sigma_algebra M'" and "Y \<in> measurable M M'" "Z \<in> borel_measurable M" |
124 shows "Z \<in> borel_measurable (sigma_algebra.vimage_algebra M' (space M) Y) |
124 shows "Z \<in> borel_measurable (sigma_algebra.vimage_algebra M' (space M) Y) |
125 \<longleftrightarrow> (\<exists>g\<in>borel_measurable M'. \<forall>x\<in>space M. Z x = g (Y x))" |
125 \<longleftrightarrow> (\<exists>g\<in>borel_measurable M'. \<forall>x\<in>space M. Z x = g (Y x))" |
126 proof safe |
126 proof safe |
127 interpret M': sigma_algebra M' by fact |
127 interpret M': sigma_algebra M' by fact |
128 have Y: "Y \<in> space M \<rightarrow> space M'" using assms unfolding measurable_def by auto |
128 have Y: "Y \<in> space M \<rightarrow> space M'" using assms unfolding measurable_def by auto |
129 from M'.sigma_algebra_vimage[OF this] |
129 from M'.sigma_algebra_vimage[OF this] |
130 interpret va: sigma_algebra "M'.vimage_algebra (space M) Y" . |
130 interpret va: sigma_algebra "M'.vimage_algebra (space M) Y" . |
131 |
131 |
132 { fix g :: "'c \<Rightarrow> extreal" assume "g \<in> borel_measurable M'" |
132 { fix g :: "'c \<Rightarrow> ereal" assume "g \<in> borel_measurable M'" |
133 with M'.measurable_vimage_algebra[OF Y] |
133 with M'.measurable_vimage_algebra[OF Y] |
134 have "g \<circ> Y \<in> borel_measurable (M'.vimage_algebra (space M) Y)" |
134 have "g \<circ> Y \<in> borel_measurable (M'.vimage_algebra (space M) Y)" |
135 by (rule measurable_comp) |
135 by (rule measurable_comp) |
136 moreover assume "\<forall>x\<in>space M. Z x = g (Y x)" |
136 moreover assume "\<forall>x\<in>space M. Z x = g (Y x)" |
137 then have "Z \<in> borel_measurable (M'.vimage_algebra (space M) Y) \<longleftrightarrow> |
137 then have "Z \<in> borel_measurable (M'.vimage_algebra (space M) Y) \<longleftrightarrow> |