src/HOL/Docs/MainDoc.thy
changeset 30293 cf57f2acb94c
child 30321 be94aa3b8fdd
equal deleted inserted replaced
30247:8c2649eb6a20 30293:cf57f2acb94c
       
     1 (*<*)
       
     2 theory MainDoc
       
     3 imports Main
       
     4 begin
       
     5 
       
     6 ML {*
       
     7 fun pretty_term_type_only ctxt (t, T) =
       
     8   (if fastype_of t = Sign.certify_typ (ProofContext.theory_of ctxt) T then ()
       
     9    else error "term_type_only: type mismatch";
       
    10    Syntax.pretty_typ ctxt T)
       
    11 
       
    12 val _ = ThyOutput.add_commands
       
    13   [("term_type_only", ThyOutput.args (Args.term -- Args.typ_abbrev) (ThyOutput.output pretty_term_type_only))];
       
    14 *}
       
    15 (*>*)
       
    16 text{*
       
    17 
       
    18 \begin{abstract}
       
    19 This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. The sophisicated class structure is only hinted at.
       
    20 \end{abstract}
       
    21 
       
    22 \section{HOL}
       
    23 
       
    24 The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop"Not P"}, @{prop"P & Q"}, @{prop "P | Q"}, @{prop "P --> Q"}, @{prop"ALL x. P"}, @{prop"EX x. P"}, @{prop"EX! x. P"}, @{term"THE x. P"}.
       
    25 
       
    26 Overloaded operators:
       
    27 
       
    28 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
    29 @{text "0"} & @{typeof HOL.zero}\\
       
    30 @{text "1"} & @{typeof HOL.one}\\
       
    31 @{const HOL.plus} & @{typeof HOL.plus}\\
       
    32 @{const HOL.minus} & @{typeof HOL.minus}\\
       
    33 @{const HOL.uminus} & @{typeof HOL.uminus}\\
       
    34 @{const HOL.times} & @{typeof HOL.times}\\
       
    35 @{const HOL.inverse} & @{typeof HOL.inverse}\\
       
    36 @{const HOL.divide} & @{typeof HOL.divide}\\
       
    37 @{const HOL.abs} & @{typeof HOL.abs}\\
       
    38 @{const HOL.sgn} & @{typeof HOL.sgn}\\
       
    39 @{const HOL.less_eq} & @{typeof HOL.less_eq}\\
       
    40 @{const HOL.less} & @{typeof HOL.less}\\
       
    41 @{const HOL.default} & @{typeof HOL.default}\\
       
    42 @{const HOL.undefined} & @{typeof HOL.undefined}\\
       
    43 \end{supertabular}
       
    44 
       
    45 \subsubsection*{Syntax}
       
    46 
       
    47 \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
    48 @{term"~(x = y)"} & @{term[source]"\<not> (x = y)"}\\
       
    49 @{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"}\\
       
    50 @{term"If x y z"} & @{term[source]"If x y z"}\\
       
    51 @{term"Let e\<^isub>1 (%x. e\<^isub>2)"} & @{term[source]"Let e\<^isub>1 (\<lambda>x. e\<^isub>2)"}\\
       
    52 @{term"abs x"} & @{term[source]"abs x"}\\
       
    53 @{term"uminus x"} & @{term[source]"uminus x"}\\
       
    54 \end{supertabular}
       
    55 
       
    56 \section{Orderings}
       
    57 
       
    58 A collection of classes constraining @{text"\<le>"} and @{text"<"}:
       
    59 preorders, partial orders, linear orders, dense linear orders and wellorders.
       
    60 
       
    61 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
    62 @{const Orderings.Least} & @{typeof Orderings.Least}\\
       
    63 @{const Orderings.min} & @{typeof Orderings.min}\\
       
    64 @{const Orderings.max} & @{typeof Orderings.max}\\
       
    65 @{const Orderings.mono} & @{typeof Orderings.mono}\\
       
    66 \end{tabular}
       
    67 
       
    68 \subsubsection*{Syntax}
       
    69 
       
    70 \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
    71 @{term[source]"x \<ge> y"} & @{term"x \<ge> y"}\\
       
    72 @{term[source]"x > y"} & @{term"x > y"}\\
       
    73 @{term"ALL x<=y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
       
    74 @{term"ALL x<y. P"} & @{term[source]"\<forall>x. x < y \<longrightarrow> P"}\\
       
    75 @{term"ALL x>=y. P"} & @{term[source]"\<forall>x. x \<ge> y \<longrightarrow> P"}\\
       
    76 @{term"ALL x>y. P"} & @{term[source]"\<forall>x. x > y \<longrightarrow> P"}\\
       
    77 @{term"LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
       
    78 \end{supertabular}
       
    79 
       
    80 Similar for @{text"\<exists>"} instead of @{text"\<forall>"}.
       
    81 
       
    82 \section{Set}
       
    83 
       
    84 Sets are predicates: @{text[source]"'a set  =  'a \<Rightarrow> bool"}
       
    85 \bigskip
       
    86 
       
    87 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
    88 @{const "{}"} & @{term_type_only "{}" "'a set"}\\
       
    89 @{const insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
       
    90 @{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
       
    91 @{const "op :"} & @{term_type_only "op :" "'a\<Rightarrow>'a set\<Rightarrow>bool"}\\
       
    92 @{const "op Un"} & @{term_type_only "op Un" "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"}\\
       
    93 @{const "op Int"} & @{term_type_only "op Int" "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"}\\
       
    94 @{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
       
    95 @{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
       
    96 @{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
       
    97 @{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
       
    98 @{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
       
    99 @{const UNIV} & @{term_type_only UNIV "'a set"}\\
       
   100 @{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
       
   101 @{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
       
   102 @{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
       
   103 \end{supertabular}
       
   104 
       
   105 \subsubsection*{Syntax}
       
   106 
       
   107 \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   108 @{text"{x\<^isub>1,\<dots>,x\<^isub>n}"} & @{text"insert x\<^isub>1 (\<dots> (insert x\<^isub>n {})\<dots>)"}\\
       
   109 @{term"x ~: A"} & @{term[source]"\<not>(x \<in> A)"}\\
       
   110 @{term"A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
       
   111 @{term"A \<subset> B"} & @{term[source]"A < B"}\\
       
   112 @{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
       
   113 @{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
       
   114 @{term"{x. P}"} & @{term[source]"Collect(\<lambda>x. P)"}\\
       
   115 @{term"UN x:I. A"} & @{term[source]"UNION I (\<lambda>x. A)"}\\
       
   116 @{term"UN x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
       
   117 @{term"INT x:I. A"} & @{term[source]"INTER I (\<lambda>x. A)"}\\
       
   118 @{term"INT x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
       
   119 @{term"ALL x:A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
       
   120 @{term"EX x:A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
       
   121 @{term"range f"} & @{term[source]"f ` UNIV"}\\
       
   122 \end{supertabular}
       
   123 
       
   124 
       
   125 \section{Fun}
       
   126 
       
   127 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   128 @{const "Fun.id"} & @{typeof Fun.id}\\
       
   129 @{const "Fun.comp"} & @{typeof Fun.comp}\\
       
   130 @{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
       
   131 @{const "Fun.inj"} & @{typeof Fun.inj}\\
       
   132 @{const "Fun.surj"} & @{typeof Fun.surj}\\
       
   133 @{const "Fun.bij"} & @{typeof Fun.bij}\\
       
   134 @{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
       
   135 @{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
       
   136 \end{supertabular}
       
   137 
       
   138 \subsubsection*{Syntax}
       
   139 
       
   140 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   141 @{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
       
   142 @{text"f(x\<^isub>1:=y\<^isub>1,\<dots>,x\<^isub>n:=y\<^isub>n)"} & @{text"f(x\<^isub>1:=y\<^isub>1)\<dots>(x\<^isub>n:=y\<^isub>n)"}\\
       
   143 \end{tabular}
       
   144 
       
   145 
       
   146 \section{Fixed Points}
       
   147 
       
   148 Theory: @{theory Inductive}.
       
   149 
       
   150 Least and greatest fixed points in a complete lattice @{typ 'a}:
       
   151 
       
   152 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   153 @{const Inductive.lfp} & @{typeof Inductive.lfp}\\
       
   154 @{const Inductive.gfp} & @{typeof Inductive.gfp}\\
       
   155 \end{tabular}
       
   156 
       
   157 Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
       
   158 
       
   159 \section{Sum\_Type}
       
   160 
       
   161 Type constructor @{text"+"}.
       
   162 
       
   163 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   164 @{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
       
   165 @{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
       
   166 @{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
       
   167 \end{tabular}
       
   168 
       
   169 
       
   170 \section{Product\_Type}
       
   171 
       
   172 Types @{typ unit} and @{text"\<times>"}.
       
   173 
       
   174 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   175 @{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
       
   176 @{const Pair} & @{typeof Pair}\\
       
   177 @{const fst} & @{typeof fst}\\
       
   178 @{const snd} & @{typeof snd}\\
       
   179 @{const split} & @{typeof split}\\
       
   180 @{const curry} & @{typeof curry}\\
       
   181 @{const Product_Type.Times} & @{typeof Product_Type.Times}\\
       
   182 @{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
       
   183 \end{supertabular}
       
   184 
       
   185 \subsubsection*{Syntax}
       
   186 
       
   187 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   188 @{term"Pair a b"} & @{term[source]"Pair a b"}\\
       
   189 @{term"split (\<lambda>x y. t)"} & @{term[source]"split (\<lambda>x y. t)"}\\
       
   190 \end{tabular}
       
   191 
       
   192 Pairs may be nested. Nesting to the right is printed as a tuple,
       
   193 e.g.\ \mbox{@{term"(a,b,c)"}} is really @{text"(a,(b,c))"}.
       
   194 Pattern matching with pairs and tuples extends to all binders,
       
   195 e.g.\ @{prop"ALL (x,y):A. P"}, @{term"{(x,y). P}"}, etc.
       
   196 
       
   197 
       
   198 \section{Relation}
       
   199 
       
   200 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   201 @{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
       
   202 @{const Relation.rel_comp} & @{term_type_only Relation.rel_comp "('a*'b)set\<Rightarrow>('c*'a)set\<Rightarrow>('c*'b)set"}\\
       
   203 @{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
       
   204 @{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
       
   205 @{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
       
   206 @{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
       
   207 @{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
       
   208 @{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
       
   209 @{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
       
   210 @{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
       
   211 @{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
       
   212 @{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
       
   213 @{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
       
   214 @{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
       
   215 @{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
       
   216 @{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
       
   217 @{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
       
   218 \end{supertabular}
       
   219 
       
   220 \subsubsection*{Syntax}
       
   221 
       
   222 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   223 @{term"converse r"} & @{term[source]"converse r"}
       
   224 \end{tabular}
       
   225 
       
   226 \section{Equiv\_Relations}
       
   227 
       
   228 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   229 @{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
       
   230 @{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
       
   231 @{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
       
   232 @{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
       
   233 %@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
       
   234 \end{supertabular}
       
   235 
       
   236 \subsubsection*{Syntax}
       
   237 
       
   238 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   239 @{term"congruent r f"} & @{term[source]"congruent r f"}\\
       
   240 @{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
       
   241 \end{tabular}
       
   242 
       
   243 
       
   244 \section{Transitive\_Closure}
       
   245 
       
   246 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   247 @{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
       
   248 @{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
       
   249 @{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
       
   250 \end{tabular}
       
   251 
       
   252 \subsubsection*{Syntax}
       
   253 
       
   254 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   255 @{term"rtrancl r"} & @{term[source]"rtrancl r"}\\
       
   256 @{term"trancl r"} & @{term[source]"trancl r"}\\
       
   257 @{term"reflcl r"} & @{term[source]"reflcl r"}
       
   258 \end{tabular}
       
   259 
       
   260 
       
   261 \section{Algebra}
       
   262 
       
   263 Theories @{theory OrderedGroup} and @{theory Ring_and_Field} define a large
       
   264 collection of classes describing common algebraic structures from semigroups
       
   265 up to fields. Everything is done in terms of @{const plus}, @{const times}
       
   266 and other overloaded operators.
       
   267 
       
   268 
       
   269 \section{Nat}
       
   270 
       
   271 @{datatype nat}
       
   272 \bigskip
       
   273 
       
   274 \begin{tabular}{@ {} lllllll @ {}}
       
   275 @{term "op + :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
       
   276 @{term "op - :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
       
   277 @{term "op * :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
       
   278 @{term "op ^ :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
       
   279 @{term "op div :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
       
   280 @{term "op mod :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
       
   281 @{term "op dvd :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
       
   282 @{term "op \<le> :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
       
   283 @{term "op < :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
       
   284 @{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
       
   285 @{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
       
   286 @{term "Min :: nat set \<Rightarrow> nat"} &
       
   287 @{term "Max :: nat set \<Rightarrow> nat"}\\
       
   288 \end{tabular}
       
   289 
       
   290 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   291 @{const Nat.of_nat} & @{typeof Nat.of_nat}
       
   292 \end{tabular}
       
   293 
       
   294 \section{Int}
       
   295 
       
   296 Type @{typ int}
       
   297 \bigskip
       
   298 
       
   299 \begin{tabular}{@ {} llllllll @ {}}
       
   300 @{term "op + :: int \<Rightarrow> int \<Rightarrow> int"} &
       
   301 @{term "op - :: int \<Rightarrow> int \<Rightarrow> int"} &
       
   302 @{term "uminus :: int \<Rightarrow> int"} &
       
   303 @{term "op * :: int \<Rightarrow> int \<Rightarrow> int"} &
       
   304 @{term "op ^ :: int \<Rightarrow> nat \<Rightarrow> int"} &
       
   305 @{term "op div :: int \<Rightarrow> int \<Rightarrow> int"}&
       
   306 @{term "op mod :: int \<Rightarrow> int \<Rightarrow> int"}&
       
   307 @{term "op dvd :: int \<Rightarrow> int \<Rightarrow> bool"}\\
       
   308 @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"} &
       
   309 @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"} &
       
   310 @{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
       
   311 @{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
       
   312 @{term "Min :: int set \<Rightarrow> int"} &
       
   313 @{term "Max :: int set \<Rightarrow> int"}\\
       
   314 @{term "abs :: int \<Rightarrow> int"} &
       
   315 @{term "sgn :: int \<Rightarrow> int"}\\
       
   316 \end{tabular}
       
   317 
       
   318 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   319 @{const Int.nat} & @{typeof Int.nat}\\
       
   320 @{const Int.of_int} & @{typeof Int.of_int}\\
       
   321 @{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"}\\
       
   322 \end{tabular}
       
   323 
       
   324 \subsubsection*{Syntax}
       
   325 
       
   326 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   327 @{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
       
   328 \end{tabular}
       
   329 
       
   330 
       
   331 \section{Wellfounded}
       
   332 
       
   333 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   334 @{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
       
   335 @{const Wellfounded.acyclic} & @{term_type_only Wellfounded.acyclic "('a*'a)set\<Rightarrow>bool"}\\
       
   336 @{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
       
   337 @{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
       
   338 @{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
       
   339 @{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
       
   340 @{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
       
   341 @{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
       
   342 \end{supertabular}
       
   343 
       
   344 
       
   345 \section{Power}
       
   346 
       
   347 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   348 @{const Power.power} & @{typeof Power.power}
       
   349 \end{tabular}
       
   350 
       
   351 
       
   352 \section{Iterated Functions and Relations}
       
   353 
       
   354 Theory: @{theory Relation_Power}
       
   355 
       
   356 Iterated functions \ @{term[source]"(f::'a\<Rightarrow>'a) ^ n"} \
       
   357 and relations \ @{term[source]"(r::('a\<times>'a)set) ^ n"}.
       
   358 
       
   359 
       
   360 \section{Option}
       
   361 
       
   362 @{datatype option}
       
   363 \bigskip
       
   364 
       
   365 \begin{tabular}{@ {} l @ {~::~} l @ {}}
       
   366 @{const Option.the} & @{typeof Option.the}\\
       
   367 @{const Option.map} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
       
   368 @{const Option.set} & @{term_type_only Option.set "'a option \<Rightarrow> 'a set"}
       
   369 \end{tabular}
       
   370 
       
   371 \section{List}
       
   372 
       
   373 @{datatype list}
       
   374 \bigskip
       
   375 
       
   376 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   377 @{const List.append} & @{typeof List.append}\\
       
   378 @{const List.butlast} & @{typeof List.butlast}\\
       
   379 @{const List.concat} & @{typeof List.concat}\\
       
   380 @{const List.distinct} & @{typeof List.distinct}\\
       
   381 @{const List.drop} & @{typeof List.drop}\\
       
   382 @{const List.dropWhile} & @{typeof List.dropWhile}\\
       
   383 @{const List.filter} & @{typeof List.filter}\\
       
   384 @{const List.foldl} & @{typeof List.foldl}\\
       
   385 @{const List.foldr} & @{typeof List.foldr}\\
       
   386 @{const List.hd} & @{typeof List.hd}\\
       
   387 @{const List.last} & @{typeof List.last}\\
       
   388 @{const List.length} & @{typeof List.length}\\
       
   389 @{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
       
   390 @{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
       
   391 @{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
       
   392 @{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
       
   393 @{const List.listrel} & @{term_type_only List.listrel "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
       
   394 @{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
       
   395 @{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
       
   396 @{const List.listsum} & @{typeof List.listsum}\\
       
   397 @{const List.list_all2} & @{typeof List.list_all2}\\
       
   398 @{const List.list_update} & @{typeof List.list_update}\\
       
   399 @{const List.map} & @{typeof List.map}\\
       
   400 @{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
       
   401 @{const List.remdups} & @{typeof List.remdups}\\
       
   402 @{const List.removeAll} & @{typeof List.removeAll}\\
       
   403 @{const List.remove1} & @{typeof List.remove1}\\
       
   404 @{const List.replicate} & @{typeof List.replicate}\\
       
   405 @{const List.rev} & @{typeof List.rev}\\
       
   406 @{const List.rotate} & @{typeof List.rotate}\\
       
   407 @{const List.rotate1} & @{typeof List.rotate1}\\
       
   408 @{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
       
   409 @{const List.sort} & @{typeof List.sort}\\
       
   410 @{const List.sorted} & @{typeof List.sorted}\\
       
   411 @{const List.splice} & @{typeof List.splice}\\
       
   412 @{const List.sublist} & @{typeof List.sublist}\\
       
   413 @{const List.take} & @{typeof List.take}\\
       
   414 @{const List.takeWhile} & @{typeof List.takeWhile}\\
       
   415 @{const List.tl} & @{typeof List.tl}\\
       
   416 @{const List.upt} & @{typeof List.upt}\\
       
   417 @{const List.upto} & @{typeof List.upto}\\
       
   418 @{const List.zip} & @{typeof List.zip}\\
       
   419 \end{supertabular}
       
   420 
       
   421 \subsubsection*{Syntax}
       
   422 
       
   423 \begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   424 @{text"[x\<^isub>1,\<dots>,x\<^isub>n]"} & @{text"x\<^isub>1 # \<dots> # x\<^isub>n # []"}\\
       
   425 @{term"[m..<n]"} & @{term[source]"upt m n"}\\
       
   426 @{term"[i..j]"} & @{term[source]"upto i j"}\\
       
   427 @{text"[e. x \<leftarrow> xs]"} & @{term"map (%x. e) xs"}\\
       
   428 @{term"[x \<leftarrow> xs. b]"} & @{term[source]"filter (\<lambda>x. b) xs"} \\
       
   429 @{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
       
   430 @{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
       
   431 \end{supertabular}
       
   432 \medskip
       
   433 
       
   434 Comprehension: @{text"[e. q\<^isub>1, \<dots>, q\<^isub>n]"} where each
       
   435 qualifier @{text q\<^isub>i} is either a generator @{text"pat \<leftarrow> e"} or a
       
   436 guard, i.e.\ boolean expression.
       
   437 
       
   438 \section{Map}
       
   439 
       
   440 Maps model partial functions and are often used as finite tables. However,
       
   441 the domain of a map may be infinite.
       
   442 
       
   443 @{text"'a \<rightharpoonup> 'b  =  'a \<Rightarrow> 'b option"}
       
   444 \bigskip
       
   445 
       
   446 \begin{supertabular}{@ {} l @ {~::~} l @ {}}
       
   447 @{const Map.empty} & @{typeof Map.empty}\\
       
   448 @{const Map.map_add} & @{typeof Map.map_add}\\
       
   449 @{const Map.map_comp} & @{typeof Map.map_comp}\\
       
   450 @{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
       
   451 @{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
       
   452 @{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
       
   453 @{const Map.map_le} & @{typeof Map.map_le}\\
       
   454 @{const Map.map_of} & @{typeof Map.map_of}\\
       
   455 @{const Map.map_upds} & @{typeof Map.map_upds}\\
       
   456 \end{supertabular}
       
   457 
       
   458 \subsubsection*{Syntax}
       
   459 
       
   460 \begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
       
   461 @{text"empty"} & @{term"\<lambda>x. None"}\\
       
   462 @{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
       
   463 @{text"m(x\<^isub>1\<mapsto>y\<^isub>1,\<dots>,x\<^isub>n\<mapsto>y\<^isub>n)"} & @{text[source]"m(x\<^isub>1\<mapsto>y\<^isub>1)\<dots>(x\<^isub>n\<mapsto>y\<^isub>n)"}\\
       
   464 @{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
       
   465 \end{tabular}
       
   466 
       
   467 *}
       
   468 (*<*)
       
   469 end
       
   470 (*>*)