src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy
changeset 44166 d12d89a66742
parent 44165 d26a45f3c835
child 44167 e81d676d598e
equal deleted inserted replaced
44165:d26a45f3c835 44166:d12d89a66742
   465   by (simp add: basis_eq_0)
   465   by (simp add: basis_eq_0)
   466 
   466 
   467 text {* some lemmas to map between Eucl and Cart *}
   467 text {* some lemmas to map between Eucl and Cart *}
   468 lemma basis_real_n[simp]:"(basis (\<pi>' i)::real^'a) = cart_basis i"
   468 lemma basis_real_n[simp]:"(basis (\<pi>' i)::real^'a) = cart_basis i"
   469   unfolding basis_vec_def using pi'_range[where 'n='a]
   469   unfolding basis_vec_def using pi'_range[where 'n='a]
   470   by (auto simp: vec_eq_iff)
   470   by (auto simp: vec_eq_iff axis_def)
   471 
   471 
   472 subsection {* Orthogonality on cartesian products *}
   472 subsection {* Orthogonality on cartesian products *}
   473 
   473 
   474 lemma orthogonal_basis:
   474 lemma orthogonal_basis:
   475   shows "orthogonal (cart_basis i) x \<longleftrightarrow> x$i = (0::real)"
   475   shows "orthogonal (cart_basis i) x \<longleftrightarrow> x$i = (0::real)"