src/HOL/SMT_Examples/SMT_Examples.thy
changeset 57823 d1e9022c0175
parent 57232 8cecd655eef4
child 57994 68b283f9f826
equal deleted inserted replaced
57822:9ea92df3631a 57823:d1e9022c0175
   391 lemma "x * y \<le> (0 :: int) \<Longrightarrow> x \<le> 0 \<or> y \<le> 0"
   391 lemma "x * y \<le> (0 :: int) \<Longrightarrow> x \<le> 0 \<or> y \<le> 0"
   392   using [[z3_with_extensions]] [[z3_new_extensions]]
   392   using [[z3_with_extensions]] [[z3_new_extensions]]
   393   by smt (* smt2 FIXME: "th-lemma" tactic fails *)
   393   by smt (* smt2 FIXME: "th-lemma" tactic fails *)
   394 
   394 
   395 
   395 
   396 subsection {* Linear arithmetic for natural numbers *}
       
   397 
       
   398 lemma "2 * (x::nat) ~= 1" by smt2
       
   399 
       
   400 lemma "a < 3 \<Longrightarrow> (7::nat) > 2 * a" by smt2
       
   401 
       
   402 lemma "let x = (1::nat) + y in x - y > 0 * x" by smt2
       
   403 
       
   404 lemma
       
   405   "let x = (1::nat) + y in
       
   406    let P = (if x > 0 then True else False) in
       
   407    False \<or> P = (x - 1 = y) \<or> (\<not>P \<longrightarrow> False)"
       
   408   by smt2
       
   409 
       
   410 lemma "int (nat \<bar>x::int\<bar>) = \<bar>x\<bar>" by smt2
       
   411 
       
   412 definition prime_nat :: "nat \<Rightarrow> bool" where
       
   413   "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
       
   414 lemma "prime_nat (4*m + 1) \<Longrightarrow> m \<ge> (1::nat)" by (smt2 prime_nat_def)
       
   415 
       
   416 
       
   417 section {* Pairs *}
   396 section {* Pairs *}
   418 
   397 
   419 lemma "fst (x, y) = a \<Longrightarrow> x = a"
   398 lemma "fst (x, y) = a \<Longrightarrow> x = a"
   420   using fst_conv by smt2
   399   using fst_conv by smt2
   421 
   400 
   442   "f (\<forall>x. g x) \<Longrightarrow> True"
   421   "f (\<forall>x. g x) \<Longrightarrow> True"
   443   by smt2+
   422   by smt2+
   444 
   423 
   445 lemma True using let_rsp by smt2
   424 lemma True using let_rsp by smt2
   446 lemma "le = op \<le> \<Longrightarrow> le (3::int) 42" by smt2
   425 lemma "le = op \<le> \<Longrightarrow> le (3::int) 42" by smt2
   447 lemma "map (\<lambda>i::nat. i + 1) [0, 1] = [1, 2]" by (smt2 list.map)
   426 lemma "map (\<lambda>i::int. i + 1) [0, 1] = [1, 2]" by (smt2 list.map)
   448 lemma "(ALL x. P x) \<or> ~ All P" by smt2
   427 lemma "(ALL x. P x) \<or> ~ All P" by smt2
   449 
   428 
   450 fun dec_10 :: "nat \<Rightarrow> nat" where
   429 fun dec_10 :: "int \<Rightarrow> int" where
   451   "dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
   430   "dec_10 n = (if n < 10 then n else dec_10 (n - 10))"
   452 
   431 
   453 lemma "dec_10 (4 * dec_10 4) = 6" by (smt2 dec_10.simps)
   432 lemma "dec_10 (4 * dec_10 4) = 6" by (smt2 dec_10.simps)
   454 
   433 
   455 axiomatization
   434 axiomatization
   456   eval_dioph :: "int list \<Rightarrow> nat list \<Rightarrow> int"
   435   eval_dioph :: "int list \<Rightarrow> int list \<Rightarrow> int"
   457 where
   436 where
   458   eval_dioph_mod:
   437   eval_dioph_mod: "eval_dioph ks xs mod n = eval_dioph ks (map (\<lambda>x. x mod n) xs) mod n"
   459   "eval_dioph ks xs mod int n = eval_dioph ks (map (\<lambda>x. x mod n) xs) mod int n"
       
   460 and
   438 and
   461   eval_dioph_div_mult:
   439   eval_dioph_div_mult:
   462   "eval_dioph ks (map (\<lambda>x. x div n) xs) * int n +
   440   "eval_dioph ks (map (\<lambda>x. x div n) xs) * n +
   463    eval_dioph ks (map (\<lambda>x. x mod n) xs) = eval_dioph ks xs"
   441    eval_dioph ks (map (\<lambda>x. x mod n) xs) = eval_dioph ks xs"
   464 
   442 
   465 lemma
   443 lemma
   466   "(eval_dioph ks xs = l) =
   444   "(eval_dioph ks xs = l) =
   467    (eval_dioph ks (map (\<lambda>x. x mod 2) xs) mod 2 = l mod 2 \<and>
   445    (eval_dioph ks (map (\<lambda>x. x mod 2) xs) mod 2 = l mod 2 \<and>
   468     eval_dioph ks (map (\<lambda>x. x div 2) xs) =
   446     eval_dioph ks (map (\<lambda>x. x div 2) xs) = (l - eval_dioph ks (map (\<lambda>x. x mod 2) xs)) div 2)"
   469       (l - eval_dioph ks (map (\<lambda>x. x mod 2) xs)) div 2)"
   447   using [[smt2_oracle = true]] (*FIXME*)
   470   using [[smt2_oracle=true]] (*FIXME*)
       
   471   using [[z3_new_extensions]]
   448   using [[z3_new_extensions]]
   472   by (smt2 eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
   449   by (smt2 eval_dioph_mod[where n=2] eval_dioph_div_mult[where n=2])
   473 
   450 
   474 
   451 
   475 context complete_lattice
   452 context complete_lattice