src/HOL/Analysis/Lebesgue_Measure.thy
changeset 65204 d23eded35a33
parent 64272 f76b6dda2e56
child 65585 a043de9ad41e
equal deleted inserted replaced
65203:314246c6eeaa 65204:d23eded35a33
   584       by (subst asm, subst emeasure_count_space_finite) auto
   584       by (subst asm, subst emeasure_count_space_finite) auto
   585   moreover have "emeasure lborel {undefined} \<noteq> 1" by simp
   585   moreover have "emeasure lborel {undefined} \<noteq> 1" by simp
   586   ultimately show False by contradiction
   586   ultimately show False by contradiction
   587 qed
   587 qed
   588 
   588 
       
   589 lemma mem_closed_if_AE_lebesgue_open:
       
   590   assumes "open S" "closed C"
       
   591   assumes "AE x \<in> S in lebesgue. x \<in> C"
       
   592   assumes "x \<in> S"
       
   593   shows "x \<in> C"
       
   594 proof (rule ccontr)
       
   595   assume xC: "x \<notin> C"
       
   596   with openE[of "S - C"] assms
       
   597   obtain e where e: "0 < e" "ball x e \<subseteq> S - C"
       
   598     by blast
       
   599   then obtain a b where box: "x \<in> box a b" "box a b \<subseteq> S - C"
       
   600     by (metis rational_boxes order_trans)
       
   601   then have "0 < emeasure lebesgue (box a b)"
       
   602     by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos)
       
   603   also have "\<dots> \<le> emeasure lebesgue (S - C)"
       
   604     using assms box
       
   605     by (auto intro!: emeasure_mono)
       
   606   also have "\<dots> = 0"
       
   607     using assms
       
   608     by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1)
       
   609   finally show False by simp
       
   610 qed
       
   611 
       
   612 lemma mem_closed_if_AE_lebesgue: "closed C \<Longrightarrow> (AE x in lebesgue. x \<in> C) \<Longrightarrow> x \<in> C"
       
   613   using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp
       
   614 
       
   615 
   589 subsection \<open>Affine transformation on the Lebesgue-Borel\<close>
   616 subsection \<open>Affine transformation on the Lebesgue-Borel\<close>
   590 
   617 
   591 lemma lborel_eqI:
   618 lemma lborel_eqI:
   592   fixes M :: "'a::euclidean_space measure"
   619   fixes M :: "'a::euclidean_space measure"
   593   assumes emeasure_eq: "\<And>l u. (\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b) \<Longrightarrow> emeasure M (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"
   620   assumes emeasure_eq: "\<And>l u. (\<And>b. b \<in> Basis \<Longrightarrow> l \<bullet> b \<le> u \<bullet> b) \<Longrightarrow> emeasure M (box l u) = (\<Prod>b\<in>Basis. (u - l) \<bullet> b)"