src/HOL/Analysis/Interval_Integral.thy
changeset 83011 d35875d530a2
parent 82913 7c870287f04f
equal deleted inserted replaced
83010:b01548bf9e77 83011:d35875d530a2
   399   by (auto simp: interval_lebesgue_integral_def einterval_iff)
   399   by (auto simp: interval_lebesgue_integral_def einterval_iff)
   400 
   400 
   401 lemma interval_integral_Ioo:
   401 lemma interval_integral_Ioo:
   402   "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)"
   402   "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)"
   403   by (auto simp: interval_lebesgue_integral_def einterval_iff)
   403   by (auto simp: interval_lebesgue_integral_def einterval_iff)
       
   404 
       
   405 lemma has_bochner_interval_integral_iff:
       
   406   assumes "a\<le>b"
       
   407   shows "has_bochner_integral (restrict_space lborel {a..b}) f x 
       
   408       \<longleftrightarrow> set_integrable lborel {a..b} f \<and> (LBINT u=a..b. f u) = x"
       
   409   using assms
       
   410   by (simp add: has_bochner_integral_iff integral_restrict_space interval_integral_Icc
       
   411       set_integrable_eq set_lebesgue_integral_def)
   404 
   412 
   405 lemma interval_integral_discrete_difference:
   413 lemma interval_integral_discrete_difference:
   406   fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal
   414   fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal
   407   assumes "countable X"
   415   assumes "countable X"
   408   and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
   416   and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"