equal
deleted
inserted
replaced
399 by (auto simp: interval_lebesgue_integral_def einterval_iff) |
399 by (auto simp: interval_lebesgue_integral_def einterval_iff) |
400 |
400 |
401 lemma interval_integral_Ioo: |
401 lemma interval_integral_Ioo: |
402 "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)" |
402 "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)" |
403 by (auto simp: interval_lebesgue_integral_def einterval_iff) |
403 by (auto simp: interval_lebesgue_integral_def einterval_iff) |
|
404 |
|
405 lemma has_bochner_interval_integral_iff: |
|
406 assumes "a\<le>b" |
|
407 shows "has_bochner_integral (restrict_space lborel {a..b}) f x |
|
408 \<longleftrightarrow> set_integrable lborel {a..b} f \<and> (LBINT u=a..b. f u) = x" |
|
409 using assms |
|
410 by (simp add: has_bochner_integral_iff integral_restrict_space interval_integral_Icc |
|
411 set_integrable_eq set_lebesgue_integral_def) |
404 |
412 |
405 lemma interval_integral_discrete_difference: |
413 lemma interval_integral_discrete_difference: |
406 fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal |
414 fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal |
407 assumes "countable X" |
415 assumes "countable X" |
408 and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x" |
416 and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x" |