src/HOL/Library/Abstract_Rat.thy
changeset 54671 d64a4ef26edb
parent 54670 cfb21e03fe2a
parent 54635 30666a281ae3
child 54672 748778ac0ab8
equal deleted inserted replaced
54670:cfb21e03fe2a 54671:d64a4ef26edb
     1 (*  Title:      HOL/Library/Abstract_Rat.thy
       
     2     Author:     Amine Chaieb
       
     3 *)
       
     4 
       
     5 header {* Abstract rational numbers *}
       
     6 
       
     7 theory Abstract_Rat
       
     8 imports Complex_Main
       
     9 begin
       
    10 
       
    11 type_synonym Num = "int \<times> int"
       
    12 
       
    13 abbreviation Num0_syn :: Num  ("0\<^sub>N")
       
    14   where "0\<^sub>N \<equiv> (0, 0)"
       
    15 
       
    16 abbreviation Numi_syn :: "int \<Rightarrow> Num"  ("'((_)')\<^sub>N")
       
    17   where "(i)\<^sub>N \<equiv> (i, 1)"
       
    18 
       
    19 definition isnormNum :: "Num \<Rightarrow> bool" where
       
    20   "isnormNum = (\<lambda>(a,b). (if a = 0 then b = 0 else b > 0 \<and> gcd a b = 1))"
       
    21 
       
    22 definition normNum :: "Num \<Rightarrow> Num" where
       
    23   "normNum = (\<lambda>(a,b).
       
    24     (if a=0 \<or> b = 0 then (0,0) else
       
    25       (let g = gcd a b
       
    26        in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))"
       
    27 
       
    28 declare gcd_dvd1_int[presburger] gcd_dvd2_int[presburger]
       
    29 
       
    30 lemma normNum_isnormNum [simp]: "isnormNum (normNum x)"
       
    31 proof -
       
    32   obtain a b where x: "x = (a, b)" by (cases x)
       
    33   { assume "a=0 \<or> b = 0" hence ?thesis by (simp add: x normNum_def isnormNum_def) }
       
    34   moreover
       
    35   { assume anz: "a \<noteq> 0" and bnz: "b \<noteq> 0"
       
    36     let ?g = "gcd a b"
       
    37     let ?a' = "a div ?g"
       
    38     let ?b' = "b div ?g"
       
    39     let ?g' = "gcd ?a' ?b'"
       
    40     from anz bnz have "?g \<noteq> 0" by simp  with gcd_ge_0_int[of a b]
       
    41     have gpos: "?g > 0" by arith
       
    42     have gdvd: "?g dvd a" "?g dvd b" by arith+
       
    43     from dvd_mult_div_cancel[OF gdvd(1)] dvd_mult_div_cancel[OF gdvd(2)] anz bnz
       
    44     have nz': "?a' \<noteq> 0" "?b' \<noteq> 0" by - (rule notI, simp)+
       
    45     from anz bnz have stupid: "a \<noteq> 0 \<or> b \<noteq> 0" by arith
       
    46     from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" .
       
    47     from bnz have "b < 0 \<or> b > 0" by arith
       
    48     moreover
       
    49     { assume b: "b > 0"
       
    50       from b have "?b' \<ge> 0"
       
    51         by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos])
       
    52       with nz' have b': "?b' > 0" by arith
       
    53       from b b' anz bnz nz' gp1 have ?thesis
       
    54         by (simp add: x isnormNum_def normNum_def Let_def split_def) }
       
    55     moreover {
       
    56       assume b: "b < 0"
       
    57       { assume b': "?b' \<ge> 0"
       
    58         from gpos have th: "?g \<ge> 0" by arith
       
    59         from mult_nonneg_nonneg[OF th b'] dvd_mult_div_cancel[OF gdvd(2)]
       
    60         have False using b by arith }
       
    61       hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric])
       
    62       from anz bnz nz' b b' gp1 have ?thesis
       
    63         by (simp add: x isnormNum_def normNum_def Let_def split_def) }
       
    64     ultimately have ?thesis by blast
       
    65   }
       
    66   ultimately show ?thesis by blast
       
    67 qed
       
    68 
       
    69 text {* Arithmetic over Num *}
       
    70 
       
    71 definition Nadd :: "Num \<Rightarrow> Num \<Rightarrow> Num"  (infixl "+\<^sub>N" 60) where
       
    72   "Nadd = (\<lambda>(a,b) (a',b'). if a = 0 \<or> b = 0 then normNum(a',b')
       
    73     else if a'=0 \<or> b' = 0 then normNum(a,b)
       
    74     else normNum(a*b' + b*a', b*b'))"
       
    75 
       
    76 definition Nmul :: "Num \<Rightarrow> Num \<Rightarrow> Num"  (infixl "*\<^sub>N" 60) where
       
    77   "Nmul = (\<lambda>(a,b) (a',b'). let g = gcd (a*a') (b*b')
       
    78     in (a*a' div g, b*b' div g))"
       
    79 
       
    80 definition Nneg :: "Num \<Rightarrow> Num" ("~\<^sub>N")
       
    81   where "Nneg \<equiv> (\<lambda>(a,b). (-a,b))"
       
    82 
       
    83 definition Nsub :: "Num \<Rightarrow> Num \<Rightarrow> Num"  (infixl "-\<^sub>N" 60)
       
    84   where "Nsub = (\<lambda>a b. a +\<^sub>N ~\<^sub>N b)"
       
    85 
       
    86 definition Ninv :: "Num \<Rightarrow> Num"
       
    87   where "Ninv = (\<lambda>(a,b). if a < 0 then (-b, \<bar>a\<bar>) else (b,a))"
       
    88 
       
    89 definition Ndiv :: "Num \<Rightarrow> Num \<Rightarrow> Num"  (infixl "\<div>\<^sub>N" 60)
       
    90   where "Ndiv = (\<lambda>a b. a *\<^sub>N Ninv b)"
       
    91 
       
    92 lemma Nneg_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (~\<^sub>N x)"
       
    93   by (simp add: isnormNum_def Nneg_def split_def)
       
    94 
       
    95 lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)"
       
    96   by (simp add: Nadd_def split_def)
       
    97 
       
    98 lemma Nsub_normN[simp]: "\<lbrakk> isnormNum y\<rbrakk> \<Longrightarrow> isnormNum (x -\<^sub>N y)"
       
    99   by (simp add: Nsub_def split_def)
       
   100 
       
   101 lemma Nmul_normN[simp]:
       
   102   assumes xn: "isnormNum x" and yn: "isnormNum y"
       
   103   shows "isnormNum (x *\<^sub>N y)"
       
   104 proof -
       
   105   obtain a b where x: "x = (a, b)" by (cases x)
       
   106   obtain a' b' where y: "y = (a', b')" by (cases y)
       
   107   { assume "a = 0"
       
   108     hence ?thesis using xn x y
       
   109       by (simp add: isnormNum_def Let_def Nmul_def split_def) }
       
   110   moreover
       
   111   { assume "a' = 0"
       
   112     hence ?thesis using yn x y
       
   113       by (simp add: isnormNum_def Let_def Nmul_def split_def) }
       
   114   moreover
       
   115   { assume a: "a \<noteq>0" and a': "a'\<noteq>0"
       
   116     hence bp: "b > 0" "b' > 0" using xn yn x y by (simp_all add: isnormNum_def)
       
   117     from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a * a', b * b')"
       
   118       using x y a a' bp by (simp add: Nmul_def Let_def split_def normNum_def)
       
   119     hence ?thesis by simp }
       
   120   ultimately show ?thesis by blast
       
   121 qed
       
   122 
       
   123 lemma Ninv_normN[simp]: "isnormNum x \<Longrightarrow> isnormNum (Ninv x)"
       
   124   by (simp add: Ninv_def isnormNum_def split_def)
       
   125     (cases "fst x = 0", auto simp add: gcd_commute_int)
       
   126 
       
   127 lemma isnormNum_int[simp]:
       
   128   "isnormNum 0\<^sub>N" "isnormNum ((1::int)\<^sub>N)" "i \<noteq> 0 \<Longrightarrow> isnormNum (i)\<^sub>N"
       
   129   by (simp_all add: isnormNum_def)
       
   130 
       
   131 
       
   132 text {* Relations over Num *}
       
   133 
       
   134 definition Nlt0:: "Num \<Rightarrow> bool"  ("0>\<^sub>N")
       
   135   where "Nlt0 = (\<lambda>(a,b). a < 0)"
       
   136 
       
   137 definition Nle0:: "Num \<Rightarrow> bool"  ("0\<ge>\<^sub>N")
       
   138   where "Nle0 = (\<lambda>(a,b). a \<le> 0)"
       
   139 
       
   140 definition Ngt0:: "Num \<Rightarrow> bool"  ("0<\<^sub>N")
       
   141   where "Ngt0 = (\<lambda>(a,b). a > 0)"
       
   142 
       
   143 definition Nge0:: "Num \<Rightarrow> bool"  ("0\<le>\<^sub>N")
       
   144   where "Nge0 = (\<lambda>(a,b). a \<ge> 0)"
       
   145 
       
   146 definition Nlt :: "Num \<Rightarrow> Num \<Rightarrow> bool"  (infix "<\<^sub>N" 55)
       
   147   where "Nlt = (\<lambda>a b. 0>\<^sub>N (a -\<^sub>N b))"
       
   148 
       
   149 definition Nle :: "Num \<Rightarrow> Num \<Rightarrow> bool"  (infix "\<le>\<^sub>N" 55)
       
   150   where "Nle = (\<lambda>a b. 0\<ge>\<^sub>N (a -\<^sub>N b))"
       
   151 
       
   152 definition "INum = (\<lambda>(a,b). of_int a / of_int b)"
       
   153 
       
   154 lemma INum_int [simp]: "INum (i)\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)"
       
   155   by (simp_all add: INum_def)
       
   156 
       
   157 lemma isnormNum_unique[simp]:
       
   158   assumes na: "isnormNum x" and nb: "isnormNum y"
       
   159   shows "((INum x ::'a::{field_char_0, field_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
       
   160 proof
       
   161   obtain a b where x: "x = (a, b)" by (cases x)
       
   162   obtain a' b' where y: "y = (a', b')" by (cases y)
       
   163   assume H: ?lhs
       
   164   { assume "a = 0 \<or> b = 0 \<or> a' = 0 \<or> b' = 0"
       
   165     hence ?rhs using na nb H
       
   166       by (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) }
       
   167   moreover
       
   168   { assume az: "a \<noteq> 0" and bz: "b \<noteq> 0" and a'z: "a'\<noteq>0" and b'z: "b'\<noteq>0"
       
   169     from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: x y isnormNum_def)
       
   170     from H bz b'z have eq: "a * b' = a'*b"
       
   171       by (simp add: x y INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult)
       
   172     from az a'z na nb have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1"
       
   173       by (simp_all add: x y isnormNum_def add: gcd_commute_int)
       
   174     from eq have raw_dvd: "a dvd a' * b" "b dvd b' * a" "a' dvd a * b'" "b' dvd b * a'"
       
   175       apply -
       
   176       apply algebra
       
   177       apply algebra
       
   178       apply simp
       
   179       apply algebra
       
   180       done
       
   181     from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)]
       
   182         coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]]
       
   183       have eq1: "b = b'" using pos by arith
       
   184       with eq have "a = a'" using pos by simp
       
   185       with eq1 have ?rhs by (simp add: x y) }
       
   186   ultimately show ?rhs by blast
       
   187 next
       
   188   assume ?rhs thus ?lhs by simp
       
   189 qed
       
   190 
       
   191 
       
   192 lemma isnormNum0[simp]:
       
   193     "isnormNum x \<Longrightarrow> (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)"
       
   194   unfolding INum_int(2)[symmetric]
       
   195   by (rule isnormNum_unique) simp_all
       
   196 
       
   197 lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) =
       
   198     of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)"
       
   199 proof -
       
   200   assume "d ~= 0"
       
   201   let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)"
       
   202   let ?f = "\<lambda>x. x / of_int d"
       
   203   have "x = (x div d) * d + x mod d"
       
   204     by auto
       
   205   then have eq: "of_int x = ?t"
       
   206     by (simp only: of_int_mult[symmetric] of_int_add [symmetric])
       
   207   then have "of_int x / of_int d = ?t / of_int d"
       
   208     using cong[OF refl[of ?f] eq] by simp
       
   209   then show ?thesis by (simp add: add_divide_distrib algebra_simps `d ~= 0`)
       
   210 qed
       
   211 
       
   212 lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
       
   213     (of_int(n div d)::'a::field_char_0) = of_int n / of_int d"
       
   214   apply (frule of_int_div_aux [of d n, where ?'a = 'a])
       
   215   apply simp
       
   216   apply (simp add: dvd_eq_mod_eq_0)
       
   217   done
       
   218 
       
   219 
       
   220 lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})"
       
   221 proof -
       
   222   obtain a b where x: "x = (a, b)" by (cases x)
       
   223   { assume "a = 0 \<or> b = 0"
       
   224     hence ?thesis by (simp add: x INum_def normNum_def split_def Let_def) }
       
   225   moreover
       
   226   { assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
       
   227     let ?g = "gcd a b"
       
   228     from a b have g: "?g \<noteq> 0"by simp
       
   229     from of_int_div[OF g, where ?'a = 'a]
       
   230     have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) }
       
   231   ultimately show ?thesis by blast
       
   232 qed
       
   233 
       
   234 lemma INum_normNum_iff:
       
   235   "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \<longleftrightarrow> normNum x = normNum y"
       
   236   (is "?lhs = ?rhs")
       
   237 proof -
       
   238   have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)"
       
   239     by (simp del: normNum)
       
   240   also have "\<dots> = ?lhs" by simp
       
   241   finally show ?thesis by simp
       
   242 qed
       
   243 
       
   244 lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})"
       
   245 proof -
       
   246   let ?z = "0:: 'a"
       
   247   obtain a b where x: "x = (a, b)" by (cases x)
       
   248   obtain a' b' where y: "y = (a', b')" by (cases y)
       
   249   { assume "a=0 \<or> a'= 0 \<or> b =0 \<or> b' = 0"
       
   250     hence ?thesis
       
   251       apply (cases "a=0", simp_all add: x y Nadd_def)
       
   252       apply (cases "b= 0", simp_all add: INum_def)
       
   253        apply (cases "a'= 0", simp_all)
       
   254        apply (cases "b'= 0", simp_all)
       
   255        done }
       
   256   moreover
       
   257   { assume aa': "a \<noteq> 0" "a'\<noteq> 0" and bb': "b \<noteq> 0" "b' \<noteq> 0"
       
   258     { assume z: "a * b' + b * a' = 0"
       
   259       hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp
       
   260       hence "of_int b' * of_int a / (of_int b * of_int b') +
       
   261           of_int b * of_int a' / (of_int b * of_int b') = ?z"
       
   262         by (simp add:add_divide_distrib)
       
   263       hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa'
       
   264         by simp
       
   265       from z aa' bb' have ?thesis
       
   266         by (simp add: x y th Nadd_def normNum_def INum_def split_def) }
       
   267     moreover {
       
   268       assume z: "a * b' + b * a' \<noteq> 0"
       
   269       let ?g = "gcd (a * b' + b * a') (b*b')"
       
   270       have gz: "?g \<noteq> 0" using z by simp
       
   271       have ?thesis using aa' bb' z gz
       
   272         of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]]
       
   273         of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]]
       
   274         by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib) }
       
   275     ultimately have ?thesis using aa' bb'
       
   276       by (simp add: x y Nadd_def INum_def normNum_def Let_def) }
       
   277   ultimately show ?thesis by blast
       
   278 qed
       
   279 
       
   280 lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero})"
       
   281 proof -
       
   282   let ?z = "0::'a"
       
   283   obtain a b where x: "x = (a, b)" by (cases x)
       
   284   obtain a' b' where y: "y = (a', b')" by (cases y)
       
   285   { assume "a=0 \<or> a'= 0 \<or> b = 0 \<or> b' = 0"
       
   286     hence ?thesis
       
   287       apply (cases "a=0", simp_all add: x y Nmul_def INum_def Let_def)
       
   288       apply (cases "b=0", simp_all)
       
   289       apply (cases "a'=0", simp_all)
       
   290       done }
       
   291   moreover
       
   292   { assume z: "a \<noteq> 0" "a' \<noteq> 0" "b \<noteq> 0" "b' \<noteq> 0"
       
   293     let ?g="gcd (a*a') (b*b')"
       
   294     have gz: "?g \<noteq> 0" using z by simp
       
   295     from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]]
       
   296       of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]]
       
   297     have ?thesis by (simp add: Nmul_def x y Let_def INum_def) }
       
   298   ultimately show ?thesis by blast
       
   299 qed
       
   300 
       
   301 lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)"
       
   302   by (simp add: Nneg_def split_def INum_def)
       
   303 
       
   304 lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})"
       
   305   by (simp add: Nsub_def split_def)
       
   306 
       
   307 lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)"
       
   308   by (simp add: Ninv_def INum_def split_def)
       
   309 
       
   310 lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})"
       
   311   by (simp add: Ndiv_def)
       
   312 
       
   313 lemma Nlt0_iff[simp]:
       
   314   assumes nx: "isnormNum x"
       
   315   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x"
       
   316 proof -
       
   317   obtain a b where x: "x = (a, b)" by (cases x)
       
   318   { assume "a = 0" hence ?thesis by (simp add: x Nlt0_def INum_def) }
       
   319   moreover
       
   320   { assume a: "a \<noteq> 0" hence b: "(of_int b::'a) > 0"
       
   321       using nx by (simp add: x isnormNum_def)
       
   322     from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"]
       
   323     have ?thesis by (simp add: x Nlt0_def INum_def) }
       
   324   ultimately show ?thesis by blast
       
   325 qed
       
   326 
       
   327 lemma Nle0_iff[simp]:
       
   328   assumes nx: "isnormNum x"
       
   329   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<le> 0) = 0\<ge>\<^sub>N x"
       
   330 proof -
       
   331   obtain a b where x: "x = (a, b)" by (cases x)
       
   332   { assume "a = 0" hence ?thesis by (simp add: x Nle0_def INum_def) }
       
   333   moreover
       
   334   { assume a: "a \<noteq> 0" hence b: "(of_int b :: 'a) > 0"
       
   335       using nx by (simp add: x isnormNum_def)
       
   336     from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"]
       
   337     have ?thesis by (simp add: x Nle0_def INum_def) }
       
   338   ultimately show ?thesis by blast
       
   339 qed
       
   340 
       
   341 lemma Ngt0_iff[simp]:
       
   342   assumes nx: "isnormNum x"
       
   343   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x"
       
   344 proof -
       
   345   obtain a b where x: "x = (a, b)" by (cases x)
       
   346   { assume "a = 0" hence ?thesis by (simp add: x Ngt0_def INum_def) }
       
   347   moreover
       
   348   { assume a: "a \<noteq> 0" hence b: "(of_int b::'a) > 0" using nx
       
   349       by (simp add: x isnormNum_def)
       
   350     from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"]
       
   351     have ?thesis by (simp add: x Ngt0_def INum_def) }
       
   352   ultimately show ?thesis by blast
       
   353 qed
       
   354 
       
   355 lemma Nge0_iff[simp]:
       
   356   assumes nx: "isnormNum x"
       
   357   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<ge> 0) = 0\<le>\<^sub>N x"
       
   358 proof -
       
   359   obtain a b where x: "x = (a, b)" by (cases x)
       
   360   { assume "a = 0" hence ?thesis by (simp add: x Nge0_def INum_def) }
       
   361   moreover
       
   362   { assume "a \<noteq> 0" hence b: "(of_int b::'a) > 0" using nx
       
   363       by (simp add: x isnormNum_def)
       
   364     from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"]
       
   365     have ?thesis by (simp add: x Nge0_def INum_def) }
       
   366   ultimately show ?thesis by blast
       
   367 qed
       
   368 
       
   369 lemma Nlt_iff[simp]:
       
   370   assumes nx: "isnormNum x" and ny: "isnormNum y"
       
   371   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)"
       
   372 proof -
       
   373   let ?z = "0::'a"
       
   374   have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)"
       
   375     using nx ny by simp
       
   376   also have "\<dots> = (0>\<^sub>N (x -\<^sub>N y))"
       
   377     using Nlt0_iff[OF Nsub_normN[OF ny]] by simp
       
   378   finally show ?thesis by (simp add: Nlt_def)
       
   379 qed
       
   380 
       
   381 lemma Nle_iff[simp]:
       
   382   assumes nx: "isnormNum x" and ny: "isnormNum y"
       
   383   shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\<le> INum y) = (x \<le>\<^sub>N y)"
       
   384 proof -
       
   385   have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))"
       
   386     using nx ny by simp
       
   387   also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))"
       
   388     using Nle0_iff[OF Nsub_normN[OF ny]] by simp
       
   389   finally show ?thesis by (simp add: Nle_def)
       
   390 qed
       
   391 
       
   392 lemma Nadd_commute:
       
   393   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   394   shows "x +\<^sub>N y = y +\<^sub>N x"
       
   395 proof -
       
   396   have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all
       
   397   have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp
       
   398   with isnormNum_unique[OF n] show ?thesis by simp
       
   399 qed
       
   400 
       
   401 lemma [simp]:
       
   402   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   403   shows "(0, b) +\<^sub>N y = normNum y"
       
   404     and "(a, 0) +\<^sub>N y = normNum y"
       
   405     and "x +\<^sub>N (0, b) = normNum x"
       
   406     and "x +\<^sub>N (a, 0) = normNum x"
       
   407   apply (simp add: Nadd_def split_def)
       
   408   apply (simp add: Nadd_def split_def)
       
   409   apply (subst Nadd_commute, simp add: Nadd_def split_def)
       
   410   apply (subst Nadd_commute, simp add: Nadd_def split_def)
       
   411   done
       
   412 
       
   413 lemma normNum_nilpotent_aux[simp]:
       
   414   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   415   assumes nx: "isnormNum x"
       
   416   shows "normNum x = x"
       
   417 proof -
       
   418   let ?a = "normNum x"
       
   419   have n: "isnormNum ?a" by simp
       
   420   have th: "INum ?a = (INum x ::'a)" by simp
       
   421   with isnormNum_unique[OF n nx] show ?thesis by simp
       
   422 qed
       
   423 
       
   424 lemma normNum_nilpotent[simp]:
       
   425   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   426   shows "normNum (normNum x) = normNum x"
       
   427   by simp
       
   428 
       
   429 lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N"
       
   430   by (simp_all add: normNum_def)
       
   431 
       
   432 lemma normNum_Nadd:
       
   433   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   434   shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp
       
   435 
       
   436 lemma Nadd_normNum1[simp]:
       
   437   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   438   shows "normNum x +\<^sub>N y = x +\<^sub>N y"
       
   439 proof -
       
   440   have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all
       
   441   have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp
       
   442   also have "\<dots> = INum (x +\<^sub>N y)" by simp
       
   443   finally show ?thesis using isnormNum_unique[OF n] by simp
       
   444 qed
       
   445 
       
   446 lemma Nadd_normNum2[simp]:
       
   447   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   448   shows "x +\<^sub>N normNum y = x +\<^sub>N y"
       
   449 proof -
       
   450   have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all
       
   451   have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp
       
   452   also have "\<dots> = INum (x +\<^sub>N y)" by simp
       
   453   finally show ?thesis using isnormNum_unique[OF n] by simp
       
   454 qed
       
   455 
       
   456 lemma Nadd_assoc:
       
   457   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   458   shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)"
       
   459 proof -
       
   460   have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all
       
   461   have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp
       
   462   with isnormNum_unique[OF n] show ?thesis by simp
       
   463 qed
       
   464 
       
   465 lemma Nmul_commute: "isnormNum x \<Longrightarrow> isnormNum y \<Longrightarrow> x *\<^sub>N y = y *\<^sub>N x"
       
   466   by (simp add: Nmul_def split_def Let_def gcd_commute_int mult_commute)
       
   467 
       
   468 lemma Nmul_assoc:
       
   469   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   470   assumes nx: "isnormNum x" and ny: "isnormNum y" and nz: "isnormNum z"
       
   471   shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)"
       
   472 proof -
       
   473   from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))"
       
   474     by simp_all
       
   475   have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp
       
   476   with isnormNum_unique[OF n] show ?thesis by simp
       
   477 qed
       
   478 
       
   479 lemma Nsub0:
       
   480   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   481   assumes x: "isnormNum x" and y: "isnormNum y"
       
   482   shows "x -\<^sub>N y = 0\<^sub>N \<longleftrightarrow> x = y"
       
   483 proof -
       
   484   fix h :: 'a
       
   485   from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"]
       
   486   have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp
       
   487   also have "\<dots> = (INum x = (INum y :: 'a))" by simp
       
   488   also have "\<dots> = (x = y)" using x y by simp
       
   489   finally show ?thesis .
       
   490 qed
       
   491 
       
   492 lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N"
       
   493   by (simp_all add: Nmul_def Let_def split_def)
       
   494 
       
   495 lemma Nmul_eq0[simp]:
       
   496   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
       
   497   assumes nx: "isnormNum x" and ny: "isnormNum y"
       
   498   shows "x*\<^sub>N y = 0\<^sub>N \<longleftrightarrow> x = 0\<^sub>N \<or> y = 0\<^sub>N"
       
   499 proof -
       
   500   fix h :: 'a
       
   501   obtain a b where x: "x = (a, b)" by (cases x)
       
   502   obtain a' b' where y: "y = (a', b')" by (cases y)
       
   503   have n0: "isnormNum 0\<^sub>N" by simp
       
   504   show ?thesis using nx ny
       
   505     apply (simp only: isnormNum_unique[where ?'a = 'a, OF  Nmul_normN[OF nx ny] n0, symmetric]
       
   506       Nmul[where ?'a = 'a])
       
   507     apply (simp add: x y INum_def split_def isnormNum_def split: split_if_asm)
       
   508     done
       
   509 qed
       
   510 
       
   511 lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c"
       
   512   by (simp add: Nneg_def split_def)
       
   513 
       
   514 lemma Nmul1[simp]:
       
   515     "isnormNum c \<Longrightarrow> (1)\<^sub>N *\<^sub>N c = c"
       
   516     "isnormNum c \<Longrightarrow> c *\<^sub>N (1)\<^sub>N = c"
       
   517   apply (simp_all add: Nmul_def Let_def split_def isnormNum_def)
       
   518   apply (cases "fst c = 0", simp_all, cases c, simp_all)+
       
   519   done
       
   520 
       
   521 end