201 by (simp_all add: v(3)) |
201 by (simp_all add: v(3)) |
202 show "pathfinish (subpath v 1 h) = a" |
202 show "pathfinish (subpath v 1 h) = a" |
203 by (metis \<open>pathfinish h = g u\<close> pathfinish_def pathfinish_subpath u(3)) |
203 by (metis \<open>pathfinish h = g u\<close> pathfinish_def pathfinish_subpath u(3)) |
204 show "path_image (subpath 0 v h) \<inter> path_image (subpath v 1 h) = {a, b}" |
204 show "path_image (subpath 0 v h) \<inter> path_image (subpath v 1 h) = {a, b}" |
205 proof |
205 proof |
206 show "path_image (subpath 0 v h) \<inter> path_image (subpath v 1 h) \<subseteq> {a, b}" |
206 have "loop_free h" |
207 using v \<open>pathfinish (subpath v 1 h) = a\<close> \<open>simple_path h\<close> |
207 using \<open>simple_path h\<close> simple_path_def by blast |
208 apply (auto simp: simple_path_def path_image_subpath image_iff Ball_def) |
208 then show "path_image (subpath 0 v h) \<inter> path_image (subpath v 1 h) \<subseteq> {a, b}" |
209 by (metis (full_types) less_eq_real_def less_irrefl less_le_trans) |
209 using v \<open>pathfinish (subpath v 1 h) = a\<close> |
|
210 apply (clarsimp simp add: loop_free_def path_image_subpath Ball_def) |
|
211 by (smt (verit)) |
210 show "{a, b} \<subseteq> path_image (subpath 0 v h) \<inter> path_image (subpath v 1 h)" |
212 show "{a, b} \<subseteq> path_image (subpath 0 v h) \<inter> path_image (subpath v 1 h)" |
211 using v \<open>pathstart (subpath 0 v h) = a\<close> \<open>pathfinish (subpath v 1 h) = a\<close> |
213 using v \<open>pathstart (subpath 0 v h) = a\<close> \<open>pathfinish (subpath v 1 h) = a\<close> |
212 apply (auto simp: path_image_subpath image_iff) |
214 by (auto simp: path_image_subpath image_iff Bex_def) |
213 by (metis atLeastAtMost_iff order_refl) |
|
214 qed |
215 qed |
215 show "path_image (subpath 0 v h) \<union> path_image (subpath v 1 h) = path_image g" |
216 show "path_image (subpath 0 v h) \<union> path_image (subpath v 1 h) = path_image g" |
216 using v apply (simp add: path_image_subpath pihg [symmetric]) |
217 using v apply (simp add: path_image_subpath pihg [symmetric]) |
217 using path_image_def by fastforce |
218 using path_image_def by fastforce |
218 qed |
219 qed |