equal
deleted
inserted
replaced
561 class polish_space = complete_space + second_countable_topology |
561 class polish_space = complete_space + second_countable_topology |
562 |
562 |
563 |
563 |
564 subsection \<open>Limit Points\<close> |
564 subsection \<open>Limit Points\<close> |
565 |
565 |
566 definition\<^marker>\<open>tag important\<close> (in topological_space) islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "islimpt" 60) |
566 definition\<^marker>\<open>tag important\<close> (in topological_space) islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixr \<open>islimpt\<close> 60) |
567 where "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))" |
567 where "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))" |
568 |
568 |
569 lemma islimptI: |
569 lemma islimptI: |
570 assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x" |
570 assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x" |
571 shows "x islimpt S" |
571 shows "x islimpt S" |
2219 show ?thesis |
2219 show ?thesis |
2220 by (metis (no_types, opaque_lifting) g continuous_on_compose homeomorphism_def homeomorphism_translation) |
2220 by (metis (no_types, opaque_lifting) g continuous_on_compose homeomorphism_def homeomorphism_translation) |
2221 qed |
2221 qed |
2222 |
2222 |
2223 definition\<^marker>\<open>tag important\<close> homeomorphic :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool" |
2223 definition\<^marker>\<open>tag important\<close> homeomorphic :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool" |
2224 (infixr "homeomorphic" 60) |
2224 (infixr \<open>homeomorphic\<close> 60) |
2225 where "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)" |
2225 where "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)" |
2226 |
2226 |
2227 lemma homeomorphic_empty [iff]: |
2227 lemma homeomorphic_empty [iff]: |
2228 "S homeomorphic {} \<longleftrightarrow> S = {}" "{} homeomorphic S \<longleftrightarrow> S = {}" |
2228 "S homeomorphic {} \<longleftrightarrow> S = {}" "{} homeomorphic S \<longleftrightarrow> S = {}" |
2229 by (auto simp: homeomorphic_def homeomorphism_def) |
2229 by (auto simp: homeomorphic_def homeomorphism_def) |