src/HOL/Analysis/Homotopy.thy
changeset 80914 d97fdabd9e2b
parent 80052 35b2143aeec6
equal deleted inserted replaced
80913:46f59511b7bb 80914:d97fdabd9e2b
  3338 subsection\<open>Homotopy equivalence\<close>
  3338 subsection\<open>Homotopy equivalence\<close>
  3339 
  3339 
  3340 subsection\<open>Homotopy equivalence of topological spaces.\<close>
  3340 subsection\<open>Homotopy equivalence of topological spaces.\<close>
  3341 
  3341 
  3342 definition\<^marker>\<open>tag important\<close> homotopy_equivalent_space
  3342 definition\<^marker>\<open>tag important\<close> homotopy_equivalent_space
  3343              (infix "homotopy'_equivalent'_space" 50)
  3343              (infix \<open>homotopy'_equivalent'_space\<close> 50)
  3344   where "X homotopy_equivalent_space Y \<equiv>
  3344   where "X homotopy_equivalent_space Y \<equiv>
  3345         (\<exists>f g. continuous_map X Y f \<and>
  3345         (\<exists>f g. continuous_map X Y f \<and>
  3346               continuous_map Y X g \<and>
  3346               continuous_map Y X g \<and>
  3347               homotopic_with (\<lambda>x. True) X X (g \<circ> f) id \<and>
  3347               homotopic_with (\<lambda>x. True) X X (g \<circ> f) id \<and>
  3348               homotopic_with (\<lambda>x. True) Y Y (f \<circ> g) id)"
  3348               homotopic_with (\<lambda>x. True) Y Y (f \<circ> g) id)"
  3779     by simp
  3779     by simp
  3780 qed
  3780 qed
  3781 
  3781 
  3782 
  3782 
  3783 abbreviation\<^marker>\<open>tag important\<close> homotopy_eqv :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
  3783 abbreviation\<^marker>\<open>tag important\<close> homotopy_eqv :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
  3784              (infix "homotopy'_eqv" 50)
  3784              (infix \<open>homotopy'_eqv\<close> 50)
  3785   where "S homotopy_eqv T \<equiv> top_of_set S homotopy_equivalent_space top_of_set T"
  3785   where "S homotopy_eqv T \<equiv> top_of_set S homotopy_equivalent_space top_of_set T"
  3786 
  3786 
  3787 lemma homeomorphic_imp_homotopy_eqv: "S homeomorphic T \<Longrightarrow> S homotopy_eqv T"
  3787 lemma homeomorphic_imp_homotopy_eqv: "S homeomorphic T \<Longrightarrow> S homotopy_eqv T"
  3788   unfolding homeomorphic_def homeomorphism_def homotopy_equivalent_space_def
  3788   unfolding homeomorphic_def homeomorphism_def homotopy_equivalent_space_def
  3789   by (metis continuous_map_subtopology_eu homotopic_with_id2 openin_imp_subset openin_subtopology_self topspace_euclidean_subtopology)
  3789   by (metis continuous_map_subtopology_eu homotopic_with_id2 openin_imp_subset openin_subtopology_self topspace_euclidean_subtopology)