src/HOL/Lambda/Type.thy
changeset 9622 d9aa8ca06bc2
parent 9114 de99e37effda
child 9641 3b80e7cf6629
equal deleted inserted replaced
9621:3047ada4bc05 9622:d9aa8ca06bc2
     1 (*  Title:      HOL/Lambda/Type.thy
     1 (*  Title:      HOL/Lambda/Type.thy
     2     ID:         $Id$
     2     ID:         $Id$
     3     Author:     Stefan Berghofer
     3     Author:     Stefan Berghofer
     4     Copyright   2000 TU Muenchen
     4     Copyright   2000 TU Muenchen
     5 
     5 
     6 Simply-typed lambda terms.
     6 Simply-typed lambda terms.  Subject reduction and strong normalization
       
     7 of simply-typed lambda terms.  Partly based on a paper proof by Ralph
       
     8 Matthes.
     7 *)
     9 *)
     8 
    10 
     9 Type = InductTermi +
    11 theory Type = InductTermi:
    10 
    12 
    11 datatype typ = Atom nat
    13 datatype "typ" =
    12              | Fun typ typ (infixr "=>" 200)
    14     Atom nat
       
    15   | Fun "typ" "typ"     (infixr "=>" 200)
    13 
    16 
    14 consts
    17 consts
    15   typing :: "((nat => typ) * dB * typ) set"
    18   typing :: "((nat => typ) * dB * typ) set"
    16 
    19 
    17 syntax
    20 syntax
    18   "@type" :: "[nat => typ, dB, typ] => bool" ("_ |- _ : _" [50,50,50] 50)
    21   "_typing" :: "[nat => typ, dB, typ] => bool"   ("_ |- _ : _" [50,50,50] 50)
    19   "=>>"   :: "[typ list, typ] => typ" (infixl 150)
    22   "_funs"   :: "[typ list, typ] => typ"         (infixl "=>>" 150)
    20 
    23 
    21 translations
    24 translations
    22   "env |- t : T" == "(env, t, T) : typing"
    25   "env |- t : T" == "(env, t, T) : typing"
    23   "Ts =>> T" == "foldr Fun Ts T"
    26   "Ts =>> T" == "foldr Fun Ts T"
    24 
    27 
       
    28 lemmas [intro!] = IT.BetaI IT.LambdaI IT.VarI
       
    29 
       
    30 (* FIXME
       
    31 declare IT.intros [intro!]
       
    32 *)
       
    33 
    25 inductive typing
    34 inductive typing
    26 intrs
    35 intros (* FIXME [intro!] *)
    27   VAR  "env x = T ==> env |- Var x : T"
    36   Var: "env x = T ==> env |- Var x : T"
    28   ABS  "(nat_case T env) |- t : U ==> env |- (Abs t) : (T => U)"
    37   Abs: "(nat_case T env) |- t : U ==> env |- (Abs t) : (T => U)"
    29   APP  "[| env |- s : T => U; env |- t : T |] ==> env |- (s $ t) : U"
    38   App: "env |- s : T => U ==> env |- t : T ==> env |- (s $ t) : U"
       
    39 
       
    40 lemmas [intro!] = App Abs Var
    30 
    41 
    31 consts
    42 consts
    32   "types" :: "[nat => typ, dB list, typ list] => bool"
    43   "types" :: "[nat => typ, dB list, typ list] => bool"
    33 
       
    34 primrec
    44 primrec
    35   "types e [] Ts = (Ts = [])"
    45   "types e [] Ts = (Ts = [])"
    36   "types e (t # ts) Ts = (case Ts of
    46   "types e (t # ts) Ts =
       
    47     (case Ts of
    37       [] => False
    48       [] => False
    38     | T # Ts => e |- t : T & types e ts Ts)"
    49     | T # Ts => e |- t : T & types e ts Ts)"
    39 
    50 
       
    51 (* FIXME order *)
       
    52 inductive_cases [elim!]:
       
    53   "e |- Abs t : T"
       
    54   "e |- t $ u : T"
       
    55   "e |- Var i : T"
       
    56 
       
    57 inductive_cases [elim!]:
       
    58   "x # xs : lists S"
       
    59 
       
    60 
       
    61 text {* Some tests. *}
       
    62 
       
    63 lemma "\<exists>T U. e |- Abs (Abs (Abs (Var 1 $ (Var 2 $ Var 1 $ Var 0)))) : T \<and> U = T"
       
    64   apply (intro exI conjI)
       
    65   apply force
       
    66   apply (rule refl)
       
    67   done
       
    68 
       
    69 lemma "\<exists>T U. e |- Abs (Abs (Abs (Var 2 $ Var 0 $ (Var 1 $ Var 0)))) : T \<and> U = T";
       
    70   apply (intro exI conjI)
       
    71   apply force
       
    72   apply (rule refl)
       
    73   done
       
    74 
       
    75 
       
    76 text {* n-ary function types *}
       
    77 
       
    78 lemma list_app_typeD [rulify]:
       
    79     "\<forall>t T. e |- t $$ ts : T --> (\<exists>Ts. e |- t : Ts =>> T \<and> types e ts Ts)"
       
    80   apply (induct_tac ts)
       
    81    apply simp
       
    82   apply (intro strip)
       
    83   apply simp
       
    84   apply (erule_tac x = "t $ a" in allE)
       
    85   apply (erule_tac x = T in allE)
       
    86   apply (erule impE)
       
    87    apply assumption
       
    88   apply (elim exE conjE)
       
    89   apply (ind_cases "e |- t $ u : T")
       
    90   apply (rule_tac x = "Ta # Ts" in exI)
       
    91   apply simp
       
    92   done
       
    93 
       
    94 lemma list_app_typeI [rulify]:
       
    95   "\<forall>t T Ts. e |- t : Ts =>> T --> types e ts Ts --> e |- t $$ ts : T"
       
    96   apply (induct_tac ts)
       
    97    apply (intro strip)
       
    98    apply simp
       
    99   apply (intro strip)
       
   100   apply (case_tac Ts)
       
   101    apply simp
       
   102   apply simp
       
   103   apply (erule_tac x = "t $ a" in allE)
       
   104   apply (erule_tac x = T in allE)
       
   105   apply (erule_tac x = lista in allE)
       
   106   apply (erule impE)
       
   107    apply (erule conjE)
       
   108    apply (erule typing.App)
       
   109    apply assumption
       
   110   apply blast
       
   111   done
       
   112 
       
   113 lemma lists_types [rulify]:
       
   114     "\<forall>Ts. types e ts Ts --> ts : lists {t. \<exists>T. e |- t : T}"
       
   115   apply (induct_tac ts)
       
   116    apply (intro strip)
       
   117    apply (case_tac Ts)
       
   118      apply simp
       
   119      apply (rule lists.Nil)
       
   120     apply simp
       
   121   apply (intro strip)
       
   122   apply (case_tac Ts)
       
   123    apply simp
       
   124   apply simp
       
   125   apply (rule lists.Cons)
       
   126    apply blast
       
   127   apply blast
       
   128   done
       
   129 
       
   130 
       
   131 text {* lifting preserves termination and well-typedness *}
       
   132 
       
   133 lemma lift_map [rulify, simp]:
       
   134     "\<forall>t. lift (t $$ ts) i = lift t i $$ map (\<lambda>t. lift t i) ts"
       
   135   apply (induct_tac ts)
       
   136   apply simp_all
       
   137   done
       
   138 
       
   139 lemma subst_map [rulify, simp]:
       
   140   "\<forall>t. subst (t $$ ts) u i = subst t u i $$ map (\<lambda>t. subst t u i) ts"
       
   141   apply (induct_tac ts)
       
   142   apply simp_all
       
   143   done
       
   144 
       
   145 lemma lift_IT [rulify, intro!]:
       
   146     "t : IT ==> \<forall>i. lift t i : IT"
       
   147   apply (erule IT.induct)
       
   148     apply (rule allI)
       
   149     apply (simp (no_asm))
       
   150     apply (rule conjI)
       
   151      apply
       
   152       (rule impI,
       
   153        rule IT.VarI,
       
   154        erule lists.induct,
       
   155        simp (no_asm),
       
   156        rule lists.Nil,
       
   157        simp (no_asm),
       
   158        erule IntE,
       
   159        rule lists.Cons,
       
   160        blast,
       
   161        assumption)+
       
   162      apply auto
       
   163    done
       
   164 
       
   165 lemma lifts_IT [rulify]:
       
   166     "ts : lists IT --> map (\<lambda>t. lift t 0) ts : lists IT"
       
   167   apply (induct_tac ts)
       
   168    apply auto
       
   169   done
       
   170 
       
   171 
       
   172 lemma shift_env [simp]:
       
   173  "nat_case T
       
   174     (\<lambda>j. if j < i then e j else if j = i then Ua else e (j - 1)) =
       
   175     (\<lambda>j. if j < Suc i then nat_case T e j else if j = Suc i then Ua
       
   176           else nat_case T e (j - 1))"
       
   177   apply (rule ext)
       
   178   apply (case_tac j)
       
   179    apply simp
       
   180   apply (case_tac nat)
       
   181   apply simp_all
       
   182   done
       
   183 
       
   184 lemma lift_type' [rulify]:
       
   185   "e |- t : T ==> \<forall>i U.
       
   186     (\<lambda>j. if j < i then e j
       
   187           else if j = i then U 
       
   188           else e (j - 1)) |- lift t i : T"
       
   189   apply (erule typing.induct)
       
   190     apply auto
       
   191   done
       
   192 
       
   193 
       
   194 lemma lift_type [intro!]:
       
   195   "e |- t : T ==> nat_case U e |- lift t 0 : T"
       
   196   apply (subgoal_tac
       
   197     "nat_case U e =
       
   198       (\<lambda>j. if j < 0 then e j
       
   199             else if j = 0 then U else e (j - 1))")
       
   200    apply (erule ssubst)
       
   201    apply (erule lift_type')
       
   202   apply (rule ext)
       
   203   apply (case_tac j)
       
   204    apply simp_all
       
   205   done
       
   206 
       
   207 lemma lift_types [rulify]:
       
   208   "\<forall>Ts. types e ts Ts -->
       
   209     types (\<lambda>j. if j < i then e j
       
   210                 else if j = i then U
       
   211                 else e (j - 1)) (map (\<lambda>t. lift t i) ts) Ts"
       
   212   apply (induct_tac ts)
       
   213    apply simp
       
   214   apply (intro strip)
       
   215   apply (case_tac Ts)
       
   216    apply simp_all
       
   217   apply (rule lift_type')
       
   218   apply (erule conjunct1)
       
   219   done
       
   220 
       
   221 
       
   222 text {* substitution lemma *}
       
   223 
       
   224 lemma subst_lemma [rulify]:
       
   225  "e |- t : T ==> \<forall>e' i U u.
       
   226     e = (\<lambda>j. if j < i then e' j
       
   227               else if j = i then U
       
   228               else e' (j-1)) -->
       
   229     e' |- u : U --> e' |- t[u/i] : T"
       
   230   apply (erule typing.induct)
       
   231     apply (intro strip)
       
   232     apply (case_tac "x = i")
       
   233      apply simp
       
   234     apply (frule linorder_neq_iff [THEN iffD1])
       
   235     apply (erule disjE)
       
   236      apply simp
       
   237      apply (rule typing.Var)
       
   238      apply assumption
       
   239     apply (frule order_less_not_sym)
       
   240     apply (simp only: subst_gt split: split_if add: if_False)
       
   241     apply (rule typing.Var)
       
   242     apply assumption
       
   243    apply fastsimp
       
   244   apply fastsimp
       
   245   done
       
   246 
       
   247 lemma substs_lemma [rulify]:
       
   248   "e |- u : T ==>
       
   249     \<forall>Ts. types (\<lambda>j. if j < i then e j
       
   250                      else if j = i then T else e (j - 1)) ts Ts -->
       
   251       types e (map (%t. t[u/i]) ts) Ts"
       
   252   apply (induct_tac ts)
       
   253    apply (intro strip)
       
   254    apply (case_tac Ts)
       
   255     apply simp
       
   256    apply simp
       
   257   apply (intro strip)
       
   258   apply (case_tac Ts)
       
   259    apply simp
       
   260   apply simp
       
   261   apply (erule conjE)
       
   262   apply (erule subst_lemma)
       
   263   apply (rule refl)
       
   264   apply assumption
       
   265   done
       
   266 
       
   267 
       
   268 text {* subject reduction *}
       
   269 
       
   270 lemma subject_reduction [rulify]:
       
   271     "e |- t : T ==> \<forall>t'. t -> t' --> e |- t' : T"
       
   272   apply (erule typing.induct)
       
   273     apply blast
       
   274    apply blast
       
   275   apply (intro strip)
       
   276   apply (ind_cases "s $ t -> t'")
       
   277     apply hypsubst
       
   278     apply (ind_cases "env |- Abs t : T => U")
       
   279     apply (rule subst_lemma)
       
   280       apply assumption
       
   281      prefer 2
       
   282      apply assumption
       
   283     apply (rule ext)
       
   284     apply (case_tac j)
       
   285 
       
   286     apply simp
       
   287     apply simp
       
   288     apply fast
       
   289     apply fast
       
   290       (* FIXME apply auto *)
       
   291   done
       
   292 
       
   293 text {* additional lemmas *}
       
   294 
       
   295 lemma app_last: "(t $$ ts) $ u = t $$ (ts @ [u])"
       
   296   apply simp
       
   297   done
       
   298 
       
   299 
       
   300 lemma subst_Var_IT [rulify]: "r : IT ==> \<forall>i j. r[Var i/j] : IT"
       
   301   apply (erule IT.induct)
       
   302     txt {* Var *}
       
   303     apply (intro strip)
       
   304     apply (simp (no_asm) add: subst_Var)
       
   305     apply
       
   306     ((rule conjI impI)+,
       
   307       rule IT.VarI,
       
   308       erule lists.induct,
       
   309       simp (no_asm),
       
   310       rule lists.Nil,
       
   311       simp (no_asm),
       
   312       erule IntE,
       
   313       erule CollectE,
       
   314       rule lists.Cons,
       
   315       fast,
       
   316       assumption)+
       
   317    txt {* Lambda *}
       
   318    apply (intro strip)
       
   319    apply simp
       
   320    apply (rule IT.LambdaI)
       
   321    apply fast
       
   322   txt {* Beta *}
       
   323   apply (intro strip)
       
   324   apply (simp (no_asm_use) add: subst_subst [symmetric])
       
   325   apply (rule IT.BetaI)
       
   326    apply auto
       
   327   done
       
   328 
       
   329 lemma Var_IT: "Var n \<in> IT"
       
   330   apply (subgoal_tac "Var n $$ [] \<in> IT")
       
   331    apply simp
       
   332   apply (rule IT.VarI)
       
   333   apply (rule lists.Nil)
       
   334   done
       
   335 
       
   336 lemma app_Var_IT: "t : IT ==> t $ Var i : IT"
       
   337   apply (erule IT.induct)
       
   338     apply (subst app_last)
       
   339     apply (rule IT.VarI)
       
   340     apply simp
       
   341     apply (rule lists.Cons)
       
   342      apply (rule Var_IT)
       
   343     apply (rule lists.Nil)
       
   344    apply (rule IT.BetaI [where ?ss = "[]", unfold foldl_Nil [THEN eq_reflection]])
       
   345     apply (erule subst_Var_IT)
       
   346    apply (rule Var_IT)
       
   347   apply (subst app_last)
       
   348   apply (rule IT.BetaI)
       
   349    apply (subst app_last [symmetric])
       
   350    apply assumption
       
   351   apply assumption
       
   352   done
       
   353 
       
   354 
       
   355 text {* Well-typed substitution preserves termination. *}
       
   356 
       
   357 lemma subst_type_IT [rulify]:
       
   358   "\<forall>t. t : IT --> (\<forall>e T u i.
       
   359     (\<lambda>j. if j < i then e j
       
   360           else if j = i then U
       
   361           else e (j - 1)) |- t : T -->
       
   362     u : IT --> e |- u : U --> t[u/i] : IT)"
       
   363   apply (rule_tac f = size and a = U in measure_induct)
       
   364   apply (rule allI)
       
   365   apply (rule impI)
       
   366   apply (erule IT.induct)
       
   367     txt {* Var *}
       
   368     apply (intro strip)
       
   369     apply (case_tac "n = i")
       
   370      txt {* n=i *}
       
   371      apply (case_tac rs)
       
   372       apply simp
       
   373      apply simp
       
   374      apply (drule list_app_typeD)
       
   375      apply (elim exE conjE)
       
   376      apply (ind_cases "e |- t $ u : T")
       
   377      apply (ind_cases "e |- Var i : T")
       
   378      apply (drule_tac s = "(?T::typ) => ?U" in sym)
       
   379      apply simp
       
   380      apply (subgoal_tac "lift u 0 $ Var 0 : IT")
       
   381       prefer 2
       
   382       apply (rule app_Var_IT)
       
   383       apply (erule lift_IT)
       
   384      apply (subgoal_tac "(lift u 0 $ Var 0)[a[u/i]/0] : IT")
       
   385       apply (simp (no_asm_use))
       
   386       apply (subgoal_tac "(Var 0 $$ map (%t. lift t 0)
       
   387         (map (%t. t[u/i]) list))[(u $ a[u/i])/0] : IT")
       
   388        apply (simp (no_asm_use) del: map_compose add: map_compose [symmetric] o_def)
       
   389       apply (erule_tac x = "Ts =>> T" in allE)
       
   390       apply (erule impE)
       
   391        apply simp
       
   392       apply (erule_tac x = "Var 0 $$
       
   393         map (%t. lift t 0) (map (%t. t[u/i]) list)" in allE)
       
   394       apply (erule impE)
       
   395        apply (rule IT.VarI)
       
   396        apply (rule lifts_IT)
       
   397        apply (drule lists_types)
       
   398        apply
       
   399         (ind_cases "x # xs : lists (Collect P)",
       
   400 	 erule lists_IntI [THEN lists.induct],
       
   401 	 assumption)
       
   402 	apply fastsimp
       
   403        apply fastsimp
       
   404       apply (erule_tac x = e in allE)
       
   405       apply (erule_tac x = T in allE)
       
   406       apply (erule_tac x = "u $ a[u/i]" in allE)
       
   407       apply (erule_tac x = 0 in allE)
       
   408       apply (fastsimp intro!: list_app_typeI lift_types subst_lemma substs_lemma)
       
   409 
       
   410 (* FIXME
       
   411        apply (tactic { * fast_tac (claset()
       
   412   addSIs [thm "list_app_typeI", thm "lift_types", thm "subst_lemma", thm "substs_lemma"]
       
   413   addss simpset()) 1 * }) *)
       
   414 
       
   415      apply (erule_tac x = Ta in allE)
       
   416      apply (erule impE)
       
   417       apply simp
       
   418      apply (erule_tac x = "lift u 0 $ Var 0" in allE)
       
   419      apply (erule impE)
       
   420       apply assumption
       
   421      apply (erule_tac x = e in allE)
       
   422      apply (erule_tac x = "Ts =>> T" in allE)
       
   423      apply (erule_tac x = "a[u/i]" in allE)
       
   424      apply (erule_tac x = 0 in allE)
       
   425      apply (erule impE)
       
   426       apply (rule typing.App)
       
   427        apply (erule lift_type')
       
   428       apply (rule typing.Var)
       
   429       apply simp
       
   430      apply (fast intro!: subst_lemma)
       
   431     txt {* n~=i *}
       
   432     apply (drule list_app_typeD)
       
   433     apply (erule exE)
       
   434     apply (erule conjE)
       
   435     apply (drule lists_types)
       
   436     apply (subgoal_tac "map (%x. x[u/i]) rs : lists IT")
       
   437      apply (simp add: subst_Var)
       
   438      apply fast
       
   439     apply (erule lists_IntI [THEN lists.induct])
       
   440       apply assumption
       
   441      apply fastsimp
       
   442     apply fastsimp
       
   443    txt {* Lambda *}
       
   444    apply fastsimp
       
   445   txt {* Beta *}
       
   446   apply (intro strip)
       
   447   apply (simp (no_asm))
       
   448   apply (rule IT.BetaI)
       
   449    apply (simp (no_asm) del: subst_map add: subst_subst subst_map [symmetric])
       
   450    apply (drule subject_reduction)
       
   451     apply (rule apps_preserves_beta)
       
   452     apply (rule beta.beta)
       
   453    apply fast
       
   454   apply (drule list_app_typeD)
       
   455   apply fast
       
   456   done
       
   457 
       
   458 
       
   459 text {* main theorem: well-typed terms are strongly normalizing *}
       
   460 
       
   461 lemma type_implies_IT: "e |- t : T ==> t : IT"
       
   462   apply (erule typing.induct)
       
   463     apply (rule Var_IT)
       
   464    apply (erule IT.LambdaI)
       
   465   apply (subgoal_tac "(Var 0 $ lift t 0)[s/0] : IT")
       
   466    apply simp
       
   467   apply (rule subst_type_IT)
       
   468   apply (rule lists.Nil [THEN 2 lists.Cons [THEN IT.VarI], unfold foldl_Nil [THEN eq_reflection]
       
   469     foldl_Cons [THEN eq_reflection]])
       
   470       apply (erule lift_IT)
       
   471      apply (rule typing.App)
       
   472      apply (rule typing.Var)
       
   473      apply simp
       
   474     apply (erule lift_type')
       
   475    apply assumption
       
   476   apply assumption
       
   477   done
       
   478 
       
   479 theorem type_implies_termi: "e |- t : T ==> t : termi beta"
       
   480   apply (rule IT_implies_termi)
       
   481   apply (erule type_implies_IT)
       
   482   done
       
   483 
    40 end
   484 end