equal
deleted
inserted
replaced
419 assume "x dvd y" |
419 assume "x dvd y" |
420 then obtain k where "y = x * k" .. |
420 then obtain k where "y = x * k" .. |
421 then have "y = - x * - k" by simp |
421 then have "y = - x * - k" by simp |
422 then show "- x dvd y" .. |
422 then show "- x dvd y" .. |
423 qed |
423 qed |
|
424 |
|
425 lemma dvd_diff_right_iff: |
|
426 assumes "a dvd b" |
|
427 shows "a dvd b - c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q") |
|
428 using dvd_add_right_iff[of a b "-c"] assms by auto |
|
429 |
|
430 lemma dvd_diff_left_iff: |
|
431 shows "a dvd c \<Longrightarrow> a dvd b - c \<longleftrightarrow> a dvd b" |
|
432 using dvd_add_left_iff[of a "-c" b] by auto |
424 |
433 |
425 lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" |
434 lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" |
426 using dvd_add [of x y "- z"] by simp |
435 using dvd_add [of x y "- z"] by simp |
427 |
436 |
428 end |
437 end |