src/HOL/Hyperreal/HyperPow.thy
changeset 20730 da903f59e9ba
parent 20541 f614c619b1e1
child 21256 47195501ecf7
equal deleted inserted replaced
20729:1b45c35c4e85 20730:da903f59e9ba
    63 lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
    63 lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
    64 by (insert power_increasing [of 0 n "2::hypreal"], simp)
    64 by (insert power_increasing [of 0 n "2::hypreal"], simp)
    65 
    65 
    66 lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n"
    66 lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n"
    67 apply (induct_tac "n")
    67 apply (induct_tac "n")
    68 apply (auto simp add: hypreal_of_nat_Suc left_distrib)
    68 apply (auto simp add: left_distrib)
    69 apply (cut_tac n = n in two_hrealpow_ge_one, arith)
    69 apply (cut_tac n = n in two_hrealpow_ge_one, arith)
    70 done
    70 done
    71 
    71 
    72 lemma hrealpow:
    72 lemma hrealpow:
    73     "star_n X ^ m = star_n (%n. (X n::real) ^ m)"
    73     "star_n X ^ m = star_n (%n. (X n::real) ^ m)"
    76 done
    76 done
    77 
    77 
    78 lemma hrealpow_sum_square_expand:
    78 lemma hrealpow_sum_square_expand:
    79      "(x + (y::hypreal)) ^ Suc (Suc 0) =
    79      "(x + (y::hypreal)) ^ Suc (Suc 0) =
    80       x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
    80       x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
    81 by (simp add: right_distrib left_distrib hypreal_of_nat_Suc)
    81 by (simp add: right_distrib left_distrib)
    82 
    82 
    83 
    83 
    84 subsection{*Literal Arithmetic Involving Powers and Type @{typ hypreal}*}
    84 subsection{*Literal Arithmetic Involving Powers and Type @{typ hypreal}*}
    85 
    85 
    86 lemma power_hypreal_of_real_number_of:
    86 lemma power_hypreal_of_real_number_of: