src/HOL/Data_Structures/Balance.thy
changeset 64444 daae191c9344
parent 64065 40d440b75b00
child 64533 172f3a047f4a
equal deleted inserted replaced
64443:857acb970dfa 64444:daae191c9344
    94   show ?thesis by simp
    94   show ?thesis by simp
    95 qed
    95 qed
    96 
    96 
    97 (* end of mv *)
    97 (* end of mv *)
    98 
    98 
    99 fun bal :: "'a list \<Rightarrow> nat \<Rightarrow> 'a tree * 'a list" where
    99 fun bal :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a tree * 'a list" where
   100 "bal xs n = (if n=0 then (Leaf,xs) else
   100 "bal n xs = (if n=0 then (Leaf,xs) else
   101  (let m = n div 2;
   101  (let m = n div 2;
   102       (l, ys) = bal xs m;
   102       (l, ys) = bal m xs;
   103       (r, zs) = bal (tl ys) (n-1-m)
   103       (r, zs) = bal (n-1-m) (tl ys)
   104   in (Node l (hd ys) r, zs)))"
   104   in (Node l (hd ys) r, zs)))"
   105 
   105 
   106 declare bal.simps[simp del]
   106 declare bal.simps[simp del]
   107 
   107 
       
   108 definition bal_list :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a tree" where
       
   109 "bal_list n xs = fst (bal n xs)"
       
   110 
   108 definition balance_list :: "'a list \<Rightarrow> 'a tree" where
   111 definition balance_list :: "'a list \<Rightarrow> 'a tree" where
   109 "balance_list xs = fst (bal xs (length xs))"
   112 "balance_list xs = bal_list (length xs) xs"
       
   113 
       
   114 definition bal_tree :: "nat \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
       
   115 "bal_tree n t = bal_list n (inorder t)"
   110 
   116 
   111 definition balance_tree :: "'a tree \<Rightarrow> 'a tree" where
   117 definition balance_tree :: "'a tree \<Rightarrow> 'a tree" where
   112 "balance_tree = balance_list o inorder"
   118 "balance_tree t = bal_tree (size t) t"
   113 
   119 
   114 lemma bal_simps:
   120 lemma bal_simps:
   115   "bal xs 0 = (Leaf, xs)"
   121   "bal 0 xs = (Leaf, xs)"
   116   "n > 0 \<Longrightarrow>
   122   "n > 0 \<Longrightarrow>
   117    bal xs n =
   123    bal n xs =
   118   (let m = n div 2;
   124   (let m = n div 2;
   119       (l, ys) = bal xs m;
   125       (l, ys) = bal m xs;
   120       (r, zs) = bal (tl ys) (n-1-m)
   126       (r, zs) = bal (n-1-m) (tl ys)
   121   in (Node l (hd ys) r, zs))"
   127   in (Node l (hd ys) r, zs))"
   122 by(simp_all add: bal.simps)
   128 by(simp_all add: bal.simps)
   123 
   129 
   124 text\<open>The following lemmas take advantage of the fact
   130 text\<open>Some of the following lemmas take advantage of the fact
   125 that \<open>bal xs n\<close> yields a result even if \<open>n > length xs\<close>.\<close>
   131 that \<open>bal xs n\<close> yields a result even if \<open>n > length xs\<close>.\<close>
   126   
   132   
   127 lemma size_bal: "bal xs n = (t,ys) \<Longrightarrow> size t = n"
   133 lemma size_bal: "bal n xs = (t,ys) \<Longrightarrow> size t = n"
   128 proof(induction xs n arbitrary: t ys rule: bal.induct)
   134 proof(induction n xs arbitrary: t ys rule: bal.induct)
   129   case (1 xs n)
   135   case (1 n xs)
   130   thus ?case
   136   thus ?case
   131     by(cases "n=0")
   137     by(cases "n=0")
   132       (auto simp add: bal_simps Let_def split: prod.splits)
   138       (auto simp add: bal_simps Let_def split: prod.splits)
   133 qed
   139 qed
   134 
   140 
   135 lemma bal_inorder:
   141 lemma bal_inorder:
   136   "\<lbrakk> bal xs n = (t,ys); n \<le> length xs \<rbrakk>
   142   "\<lbrakk> bal n xs = (t,ys); n \<le> length xs \<rbrakk>
   137   \<Longrightarrow> inorder t = take n xs \<and> ys = drop n xs"
   143   \<Longrightarrow> inorder t = take n xs \<and> ys = drop n xs"
   138 proof(induction xs n arbitrary: t ys rule: bal.induct)
   144 proof(induction n xs arbitrary: t ys rule: bal.induct)
   139   case (1 xs n) show ?case
   145   case (1 n xs) show ?case
   140   proof cases
   146   proof cases
   141     assume "n = 0" thus ?thesis using 1 by (simp add: bal_simps)
   147     assume "n = 0" thus ?thesis using 1 by (simp add: bal_simps)
   142   next
   148   next
   143     assume [arith]: "n \<noteq> 0"
   149     assume [arith]: "n \<noteq> 0"
   144     let ?n1 = "n div 2" let ?n2 = "n - 1 - ?n1"
   150     let ?n1 = "n div 2" let ?n2 = "n - 1 - ?n1"
   145     from "1.prems" obtain l r xs' where
   151     from "1.prems" obtain l r xs' where
   146       b1: "bal xs ?n1 = (l,xs')" and
   152       b1: "bal ?n1 xs = (l,xs')" and
   147       b2: "bal (tl xs') ?n2 = (r,ys)" and
   153       b2: "bal ?n2 (tl xs') = (r,ys)" and
   148       t: "t = \<langle>l, hd xs', r\<rangle>"
   154       t: "t = \<langle>l, hd xs', r\<rangle>"
   149       by(auto simp: Let_def bal_simps split: prod.splits)
   155       by(auto simp: Let_def bal_simps split: prod.splits)
   150     have IH1: "inorder l = take ?n1 xs \<and> xs' = drop ?n1 xs"
   156     have IH1: "inorder l = take ?n1 xs \<and> xs' = drop ?n1 xs"
   151       using b1 "1.prems" by(intro "1.IH"(1)) auto
   157       using b1 "1.prems" by(intro "1.IH"(1)) auto
   152     have IH2: "inorder r = take ?n2 (tl xs') \<and> ys = drop ?n2 (tl xs')"
   158     have IH2: "inorder r = take ?n2 (tl xs') \<and> ys = drop ?n2 (tl xs')"
   160     hence "ys = drop n xs" using IH1 IH2 by (simp add: drop_Suc[symmetric])
   166     hence "ys = drop n xs" using IH1 IH2 by (simp add: drop_Suc[symmetric])
   161     thus ?thesis using * by blast
   167     thus ?thesis using * by blast
   162   qed
   168   qed
   163 qed
   169 qed
   164 
   170 
   165 corollary inorder_balance_list: "inorder(balance_list xs) = xs"
   171 corollary inorder_bal_list[simp]:
   166 using bal_inorder[of xs "length xs"]
   172   "n \<le> length xs \<Longrightarrow> inorder(bal_list n xs) = take n xs"
   167 by (metis balance_list_def order_refl prod.collapse take_all)
   173 unfolding bal_list_def by (metis bal_inorder eq_fst_iff)
       
   174 
       
   175 corollary inorder_balance_list[simp]: "inorder(balance_list xs) = xs"
       
   176 by(simp add: balance_list_def)
       
   177 
       
   178 corollary inorder_bal_tree:
       
   179   "n \<le> size t \<Longrightarrow> inorder(bal_tree n t) = take n (inorder t)"
       
   180 by(simp add: bal_tree_def)
   168 
   181 
   169 corollary inorder_balance_tree[simp]: "inorder(balance_tree t) = inorder t"
   182 corollary inorder_balance_tree[simp]: "inorder(balance_tree t) = inorder t"
   170 by(simp add: balance_tree_def inorder_balance_list)
   183 by(simp add: balance_tree_def inorder_bal_tree)
       
   184 
       
   185 corollary size_bal_list[simp]: "size(bal_list n xs) = n"
       
   186 unfolding bal_list_def by (metis prod.collapse size_bal)
   171 
   187 
   172 corollary size_balance_list[simp]: "size(balance_list xs) = length xs"
   188 corollary size_balance_list[simp]: "size(balance_list xs) = length xs"
   173 by (metis inorder_balance_list length_inorder)
   189 by (simp add: balance_list_def)
       
   190 
       
   191 corollary size_bal_tree[simp]: "size(bal_tree n t) = n"
       
   192 by(simp add: bal_tree_def)
   174 
   193 
   175 corollary size_balance_tree[simp]: "size(balance_tree t) = size t"
   194 corollary size_balance_tree[simp]: "size(balance_tree t) = size t"
   176 by(simp add: balance_tree_def inorder_balance_list)
   195 by(simp add: balance_tree_def)
   177 
   196 
   178 lemma min_height_bal:
   197 lemma min_height_bal:
   179   "bal xs n = (t,ys) \<Longrightarrow> min_height t = nat(floor(log 2 (n + 1)))"
   198   "bal n xs = (t,ys) \<Longrightarrow> min_height t = nat(floor(log 2 (n + 1)))"
   180 proof(induction xs n arbitrary: t ys rule: bal.induct)
   199 proof(induction n xs arbitrary: t ys rule: bal.induct)
   181   case (1 xs n) show ?case
   200   case (1 n xs) show ?case
   182   proof cases
   201   proof cases
   183     assume "n = 0" thus ?thesis
   202     assume "n = 0" thus ?thesis
   184       using "1.prems" by (simp add: bal_simps)
   203       using "1.prems" by (simp add: bal_simps)
   185   next
   204   next
   186     assume [arith]: "n \<noteq> 0"
   205     assume [arith]: "n \<noteq> 0"
   187     from "1.prems" obtain l r xs' where
   206     from "1.prems" obtain l r xs' where
   188       b1: "bal xs (n div 2) = (l,xs')" and
   207       b1: "bal (n div 2) xs = (l,xs')" and
   189       b2: "bal (tl xs') (n - 1 - n div 2) = (r,ys)" and
   208       b2: "bal (n - 1 - n div 2) (tl xs') = (r,ys)" and
   190       t: "t = \<langle>l, hd xs', r\<rangle>"
   209       t: "t = \<langle>l, hd xs', r\<rangle>"
   191       by(auto simp: bal_simps Let_def split: prod.splits)
   210       by(auto simp: bal_simps Let_def split: prod.splits)
   192     let ?log1 = "nat (floor(log 2 (n div 2 + 1)))"
   211     let ?log1 = "nat (floor(log 2 (n div 2 + 1)))"
   193     let ?log2 = "nat (floor(log 2 (n - 1 - n div 2 + 1)))"
   212     let ?log2 = "nat (floor(log 2 (n - 1 - n div 2 + 1)))"
   194     have IH1: "min_height l = ?log1" using "1.IH"(1) b1 by simp
   213     have IH1: "min_height l = ?log1" using "1.IH"(1) b1 by simp
   209     finally show ?thesis .
   228     finally show ?thesis .
   210   qed
   229   qed
   211 qed
   230 qed
   212 
   231 
   213 lemma height_bal:
   232 lemma height_bal:
   214   "bal xs n = (t,ys) \<Longrightarrow> height t = nat \<lceil>log 2 (n + 1)\<rceil>"
   233   "bal n xs = (t,ys) \<Longrightarrow> height t = nat \<lceil>log 2 (n + 1)\<rceil>"
   215 proof(induction xs n arbitrary: t ys rule: bal.induct)
   234 proof(induction n xs arbitrary: t ys rule: bal.induct)
   216   case (1 xs n) show ?case
   235   case (1 n xs) show ?case
   217   proof cases
   236   proof cases
   218     assume "n = 0" thus ?thesis
   237     assume "n = 0" thus ?thesis
   219       using "1.prems" by (simp add: bal_simps)
   238       using "1.prems" by (simp add: bal_simps)
   220   next
   239   next
   221     assume [arith]: "n \<noteq> 0"
   240     assume [arith]: "n \<noteq> 0"
   222     from "1.prems" obtain l r xs' where
   241     from "1.prems" obtain l r xs' where
   223       b1: "bal xs (n div 2) = (l,xs')" and
   242       b1: "bal (n div 2) xs = (l,xs')" and
   224       b2: "bal (tl xs') (n - 1 - n div 2) = (r,ys)" and
   243       b2: "bal (n - 1 - n div 2) (tl xs') = (r,ys)" and
   225       t: "t = \<langle>l, hd xs', r\<rangle>"
   244       t: "t = \<langle>l, hd xs', r\<rangle>"
   226       by(auto simp: bal_simps Let_def split: prod.splits)
   245       by(auto simp: bal_simps Let_def split: prod.splits)
   227     let ?log1 = "nat \<lceil>log 2 (n div 2 + 1)\<rceil>"
   246     let ?log1 = "nat \<lceil>log 2 (n div 2 + 1)\<rceil>"
   228     let ?log2 = "nat \<lceil>log 2 (n - 1 - n div 2 + 1)\<rceil>"
   247     let ?log2 = "nat \<lceil>log 2 (n - 1 - n div 2 + 1)\<rceil>"
   229     have IH1: "height l = ?log1" using "1.IH"(1) b1 by simp
   248     have IH1: "height l = ?log1" using "1.IH"(1) b1 by simp
   240     finally show ?thesis .
   259     finally show ?thesis .
   241   qed
   260   qed
   242 qed
   261 qed
   243 
   262 
   244 lemma balanced_bal:
   263 lemma balanced_bal:
   245   assumes "bal xs n = (t,ys)" shows "balanced t"
   264   assumes "bal n xs = (t,ys)" shows "balanced t"
   246 unfolding balanced_def
   265 unfolding balanced_def
   247 using height_bal[OF assms] min_height_bal[OF assms]
   266 using height_bal[OF assms] min_height_bal[OF assms]
   248 by linarith
   267 by linarith
   249 
   268 
       
   269 lemma height_bal_list:
       
   270   "n \<le> length xs \<Longrightarrow> height (bal_list n xs) = nat \<lceil>log 2 (n + 1)\<rceil>"
       
   271 unfolding bal_list_def by (metis height_bal prod.collapse)
       
   272 
   250 lemma height_balance_list:
   273 lemma height_balance_list:
   251   "height (balance_list xs) = nat \<lceil>log 2 (length xs + 1)\<rceil>"
   274   "height (balance_list xs) = nat \<lceil>log 2 (length xs + 1)\<rceil>"
   252 by (metis balance_list_def height_bal prod.collapse)
   275 by (simp add: balance_list_def height_bal_list)
       
   276 
       
   277 corollary height_bal_tree:
       
   278   "n \<le> length xs \<Longrightarrow> height (bal_tree n t) = nat(ceiling(log 2 (n + 1)))"
       
   279 unfolding bal_list_def bal_tree_def
       
   280 using height_bal prod.exhaust_sel by blast
   253 
   281 
   254 corollary height_balance_tree:
   282 corollary height_balance_tree:
   255   "height (balance_tree t) = nat(ceiling(log 2 (size t + 1)))"
   283   "height (balance_tree t) = nat(ceiling(log 2 (size t + 1)))"
   256 by(simp add: balance_tree_def height_balance_list)
   284 by (simp add: bal_tree_def balance_tree_def height_bal_list)
       
   285 
       
   286 corollary balanced_bal_list[simp]: "balanced (bal_list n xs)"
       
   287 unfolding bal_list_def by (metis  balanced_bal prod.collapse)
   257 
   288 
   258 corollary balanced_balance_list[simp]: "balanced (balance_list xs)"
   289 corollary balanced_balance_list[simp]: "balanced (balance_list xs)"
   259 by (metis balance_list_def balanced_bal prod.collapse)
   290 by (simp add: balance_list_def)
       
   291 
       
   292 corollary balanced_bal_tree[simp]: "balanced (bal_tree n t)"
       
   293 by (simp add: bal_tree_def)
   260 
   294 
   261 corollary balanced_balance_tree[simp]: "balanced (balance_tree t)"
   295 corollary balanced_balance_tree[simp]: "balanced (balance_tree t)"
   262 by (simp add: balance_tree_def)
   296 by (simp add: balance_tree_def)
   263 
   297 
   264 lemma wbalanced_bal: "bal xs n = (t,ys) \<Longrightarrow> wbalanced t"
   298 lemma wbalanced_bal: "bal n xs = (t,ys) \<Longrightarrow> wbalanced t"
   265 proof(induction xs n arbitrary: t ys rule: bal.induct)
   299 proof(induction n xs arbitrary: t ys rule: bal.induct)
   266   case (1 xs n)
   300   case (1 n xs)
   267   show ?case
   301   show ?case
   268   proof cases
   302   proof cases
   269     assume "n = 0"
   303     assume "n = 0"
   270     thus ?thesis
   304     thus ?thesis
   271       using "1.prems" by(simp add: bal_simps)
   305       using "1.prems" by(simp add: bal_simps)
   272   next
   306   next
   273     assume "n \<noteq> 0"
   307     assume "n \<noteq> 0"
   274     with "1.prems" obtain l ys r zs where
   308     with "1.prems" obtain l ys r zs where
   275       rec1: "bal xs (n div 2) = (l, ys)" and
   309       rec1: "bal (n div 2) xs = (l, ys)" and
   276       rec2: "bal (tl ys) (n - 1 - n div 2) = (r, zs)" and
   310       rec2: "bal (n - 1 - n div 2) (tl ys) = (r, zs)" and
   277       t: "t = \<langle>l, hd ys, r\<rangle>"
   311       t: "t = \<langle>l, hd ys, r\<rangle>"
   278       by(auto simp add: bal_simps Let_def split: prod.splits)
   312       by(auto simp add: bal_simps Let_def split: prod.splits)
   279     have l: "wbalanced l" using "1.IH"(1)[OF \<open>n\<noteq>0\<close> refl rec1] .
   313     have l: "wbalanced l" using "1.IH"(1)[OF \<open>n\<noteq>0\<close> refl rec1] .
   280     have "wbalanced r" using "1.IH"(2)[OF \<open>n\<noteq>0\<close> refl rec1[symmetric] refl rec2] .
   314     have "wbalanced r" using "1.IH"(2)[OF \<open>n\<noteq>0\<close> refl rec1[symmetric] refl rec2] .
   281     with l t size_bal[OF rec1] size_bal[OF rec2]
   315     with l t size_bal[OF rec1] size_bal[OF rec2]
   282     show ?thesis by auto
   316     show ?thesis by auto
   283   qed
   317   qed
   284 qed
   318 qed
   285 
   319 
       
   320 lemma wbalanced_bal_list[simp]: "wbalanced (bal_list n xs)"
       
   321 by(simp add: bal_list_def) (metis prod.collapse wbalanced_bal)
       
   322 
       
   323 lemma wbalanced_balance_list[simp]: "wbalanced (balance_list xs)"
       
   324 by(simp add: balance_list_def)
       
   325 
       
   326 lemma wbalanced_bal_tree[simp]: "wbalanced (bal_tree n t)"
       
   327 by(simp add: bal_tree_def)
       
   328 
   286 lemma wbalanced_balance_tree: "wbalanced (balance_tree t)"
   329 lemma wbalanced_balance_tree: "wbalanced (balance_tree t)"
   287 by(simp add: balance_tree_def balance_list_def)
   330 by (simp add: balance_tree_def)
   288   (metis prod.collapse wbalanced_bal)
       
   289 
   331 
   290 hide_const (open) bal
   332 hide_const (open) bal
   291 
   333 
   292 end
   334 end