src/HOL/Analysis/Generalised_Binomial_Theorem.thy
changeset 65274 db2de50de28e
parent 64272 f76b6dda2e56
child 65583 8d53b3bebab4
equal deleted inserted replaced
65273:917ae0ba03a2 65274:db2de50de28e
   121   proof (rule has_field_derivative_zero_constant)
   121   proof (rule has_field_derivative_zero_constant)
   122     fix z :: complex assume z': "z \<in> ball 0 K"
   122     fix z :: complex assume z': "z \<in> ball 0 K"
   123     hence z: "norm z < K" by simp
   123     hence z: "norm z < K" by simp
   124     with K have nz: "1 + z \<noteq> 0" by (auto dest!: minus_unique)
   124     with K have nz: "1 + z \<noteq> 0" by (auto dest!: minus_unique)
   125     from z K have "norm z < 1" by simp
   125     from z K have "norm z < 1" by simp
   126     hence "(1 + z) \<notin> \<real>\<^sub>\<le>\<^sub>0" by (cases z) (auto simp: complex_nonpos_Reals_iff)
   126     hence "(1 + z) \<notin> \<real>\<^sub>\<le>\<^sub>0" by (cases z) (auto simp: Complex_eq complex_nonpos_Reals_iff)
   127     hence "((\<lambda>z. f z * (1 + z) powr (-a)) has_field_derivative
   127     hence "((\<lambda>z. f z * (1 + z) powr (-a)) has_field_derivative
   128               f' z * (1 + z) powr (-a) - a * f z * (1 + z) powr (-a-1)) (at z)" using z
   128               f' z * (1 + z) powr (-a) - a * f z * (1 + z) powr (-a-1)) (at z)" using z
   129       by (auto intro!: derivative_eq_intros)
   129       by (auto intro!: derivative_eq_intros)
   130     also from z have "a * f z = (1 + z) * f' z" by (rule deriv)
   130     also from z have "a * f z = (1 + z) * f' z" by (rule deriv)
   131     finally show "((\<lambda>z. f z * (1 + z) powr (-a)) has_field_derivative 0) (at z within ball 0 K)"
   131     finally show "((\<lambda>z. f z * (1 + z) powr (-a)) has_field_derivative 0) (at z within ball 0 K)"