equal
deleted
inserted
replaced
436 and [measurable]: "f \<in> borel_measurable M" |
436 and [measurable]: "f \<in> borel_measurable M" |
437 shows "AE x in M. nn_cond_exp M F f x = nn_cond_exp M F (nn_cond_exp M G f) x" |
437 shows "AE x in M. nn_cond_exp M F f x = nn_cond_exp M F (nn_cond_exp M G f) x" |
438 proof (rule nn_cond_exp_charact, auto) |
438 proof (rule nn_cond_exp_charact, auto) |
439 interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)]) |
439 interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)]) |
440 fix A assume [measurable]: "A \<in> sets F" |
440 fix A assume [measurable]: "A \<in> sets F" |
441 then have [measurable]: "A \<in> sets G" using assms(2) by (meson set_mp subalgebra_def) |
441 then have [measurable]: "A \<in> sets G" using assms(2) by (meson subsetD subalgebra_def) |
442 |
442 |
443 have "set_nn_integral M A (nn_cond_exp M G f) = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M G f x\<partial>M)" |
443 have "set_nn_integral M A (nn_cond_exp M G f) = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M G f x\<partial>M)" |
444 by (metis (no_types) mult.commute) |
444 by (metis (no_types) mult.commute) |
445 also have "... = (\<integral>\<^sup>+ x. indicator A x * f x \<partial>M)" by (rule G.nn_cond_exp_intg, auto simp add: assms) |
445 also have "... = (\<integral>\<^sup>+ x. indicator A x * f x \<partial>M)" by (rule G.nn_cond_exp_intg, auto simp add: assms) |
446 also have "... = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M F f x \<partial>M)" by (rule nn_cond_exp_intg[symmetric], auto simp add: assms) |
446 also have "... = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M F f x \<partial>M)" by (rule nn_cond_exp_intg[symmetric], auto simp add: assms) |
1030 proof (rule real_cond_exp_charact) |
1030 proof (rule real_cond_exp_charact) |
1031 interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)]) |
1031 interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)]) |
1032 show "integrable M (real_cond_exp M G f)" by (auto simp add: assms G.real_cond_exp_int(1)) |
1032 show "integrable M (real_cond_exp M G f)" by (auto simp add: assms G.real_cond_exp_int(1)) |
1033 |
1033 |
1034 fix A assume [measurable]: "A \<in> sets F" |
1034 fix A assume [measurable]: "A \<in> sets F" |
1035 then have [measurable]: "A \<in> sets G" using assms(2) by (meson set_mp subalgebra_def) |
1035 then have [measurable]: "A \<in> sets G" using assms(2) by (meson subsetD subalgebra_def) |
1036 have "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A f" |
1036 have "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A f" |
1037 by (rule G.real_cond_exp_intA[symmetric], auto simp add: assms(3)) |
1037 by (rule G.real_cond_exp_intA[symmetric], auto simp add: assms(3)) |
1038 also have "... = set_lebesgue_integral M A (real_cond_exp M F f)" |
1038 also have "... = set_lebesgue_integral M A (real_cond_exp M F f)" |
1039 by (rule real_cond_exp_intA, auto simp add: assms(3)) |
1039 by (rule real_cond_exp_intA, auto simp add: assms(3)) |
1040 finally show "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A (real_cond_exp M F f)" by auto |
1040 finally show "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A (real_cond_exp M F f)" by auto |
1044 fixes f::"'b \<Rightarrow> 'a \<Rightarrow> real" |
1044 fixes f::"'b \<Rightarrow> 'a \<Rightarrow> real" |
1045 assumes [measurable]: "\<And>i. integrable M (f i)" |
1045 assumes [measurable]: "\<And>i. integrable M (f i)" |
1046 shows "AE x in M. real_cond_exp M F (\<lambda>x. \<Sum>i\<in>I. f i x) x = (\<Sum>i\<in>I. real_cond_exp M F (f i) x)" |
1046 shows "AE x in M. real_cond_exp M F (\<lambda>x. \<Sum>i\<in>I. f i x) x = (\<Sum>i\<in>I. real_cond_exp M F (f i) x)" |
1047 proof (rule real_cond_exp_charact) |
1047 proof (rule real_cond_exp_charact) |
1048 fix A assume [measurable]: "A \<in> sets F" |
1048 fix A assume [measurable]: "A \<in> sets F" |
1049 then have A_meas [measurable]: "A \<in> sets M" by (meson set_mp subalg subalgebra_def) |
1049 then have A_meas [measurable]: "A \<in> sets M" by (meson subsetD subalg subalgebra_def) |
1050 have *: "integrable M (\<lambda>x. indicator A x * f i x)" for i |
1050 have *: "integrable M (\<lambda>x. indicator A x * f i x)" for i |
1051 using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)] by auto |
1051 using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)] by auto |
1052 have **: "integrable M (\<lambda>x. indicator A x * real_cond_exp M F (f i) x)" for i |
1052 have **: "integrable M (\<lambda>x. indicator A x * real_cond_exp M F (f i) x)" for i |
1053 using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> real_cond_exp_int(1)[OF assms(1)]] by auto |
1053 using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> real_cond_exp_int(1)[OF assms(1)]] by auto |
1054 have inti: "(\<integral>x. indicator A x * f i x \<partial>M) = (\<integral>x. indicator A x * real_cond_exp M F (f i) x \<partial>M)" for i |
1054 have inti: "(\<integral>x. indicator A x * f i x \<partial>M) = (\<integral>x. indicator A x * real_cond_exp M F (f i) x \<partial>M)" for i |