src/HOL/Probability/Conditional_Expectation.thy
changeset 69712 dc85b5b3a532
parent 67977 557ea2740125
child 70125 b601c2c87076
equal deleted inserted replaced
69711:82a604715919 69712:dc85b5b3a532
   436     and [measurable]: "f \<in> borel_measurable M"
   436     and [measurable]: "f \<in> borel_measurable M"
   437   shows "AE x in M. nn_cond_exp M F f x = nn_cond_exp M F (nn_cond_exp M G f) x"
   437   shows "AE x in M. nn_cond_exp M F f x = nn_cond_exp M F (nn_cond_exp M G f) x"
   438 proof (rule nn_cond_exp_charact, auto)
   438 proof (rule nn_cond_exp_charact, auto)
   439   interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)])
   439   interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)])
   440   fix A assume [measurable]: "A \<in> sets F"
   440   fix A assume [measurable]: "A \<in> sets F"
   441   then have [measurable]: "A \<in> sets G" using assms(2) by (meson set_mp subalgebra_def)
   441   then have [measurable]: "A \<in> sets G" using assms(2) by (meson subsetD subalgebra_def)
   442 
   442 
   443   have "set_nn_integral M A (nn_cond_exp M G f) = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M G f x\<partial>M)"
   443   have "set_nn_integral M A (nn_cond_exp M G f) = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M G f x\<partial>M)"
   444     by (metis (no_types) mult.commute)
   444     by (metis (no_types) mult.commute)
   445   also have "... = (\<integral>\<^sup>+ x. indicator A x * f x \<partial>M)" by (rule G.nn_cond_exp_intg, auto simp add: assms)
   445   also have "... = (\<integral>\<^sup>+ x. indicator A x * f x \<partial>M)" by (rule G.nn_cond_exp_intg, auto simp add: assms)
   446   also have "... = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M F f x \<partial>M)" by (rule nn_cond_exp_intg[symmetric], auto simp add: assms)
   446   also have "... = (\<integral>\<^sup>+ x. indicator A x * nn_cond_exp M F f x \<partial>M)" by (rule nn_cond_exp_intg[symmetric], auto simp add: assms)
  1030 proof (rule real_cond_exp_charact)
  1030 proof (rule real_cond_exp_charact)
  1031   interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)])
  1031   interpret G: sigma_finite_subalgebra M G by (rule nested_subalg_is_sigma_finite[OF assms(1) assms(2)])
  1032   show "integrable M (real_cond_exp M G f)" by (auto simp add: assms G.real_cond_exp_int(1))
  1032   show "integrable M (real_cond_exp M G f)" by (auto simp add: assms G.real_cond_exp_int(1))
  1033 
  1033 
  1034   fix A assume [measurable]: "A \<in> sets F"
  1034   fix A assume [measurable]: "A \<in> sets F"
  1035   then have [measurable]: "A \<in> sets G" using assms(2) by (meson set_mp subalgebra_def)
  1035   then have [measurable]: "A \<in> sets G" using assms(2) by (meson subsetD subalgebra_def)
  1036   have "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A f"
  1036   have "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A f"
  1037     by (rule G.real_cond_exp_intA[symmetric], auto simp add: assms(3))
  1037     by (rule G.real_cond_exp_intA[symmetric], auto simp add: assms(3))
  1038   also have "... = set_lebesgue_integral M A (real_cond_exp M F f)"
  1038   also have "... = set_lebesgue_integral M A (real_cond_exp M F f)"
  1039     by (rule real_cond_exp_intA, auto simp add: assms(3))
  1039     by (rule real_cond_exp_intA, auto simp add: assms(3))
  1040   finally show "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A (real_cond_exp M F f)" by auto
  1040   finally show "set_lebesgue_integral M A (real_cond_exp M G f) = set_lebesgue_integral M A (real_cond_exp M F f)" by auto
  1044   fixes f::"'b \<Rightarrow> 'a \<Rightarrow> real"
  1044   fixes f::"'b \<Rightarrow> 'a \<Rightarrow> real"
  1045   assumes [measurable]: "\<And>i. integrable M (f i)"
  1045   assumes [measurable]: "\<And>i. integrable M (f i)"
  1046   shows "AE x in M. real_cond_exp M F (\<lambda>x. \<Sum>i\<in>I. f i x) x = (\<Sum>i\<in>I. real_cond_exp M F (f i) x)"
  1046   shows "AE x in M. real_cond_exp M F (\<lambda>x. \<Sum>i\<in>I. f i x) x = (\<Sum>i\<in>I. real_cond_exp M F (f i) x)"
  1047 proof (rule real_cond_exp_charact)
  1047 proof (rule real_cond_exp_charact)
  1048   fix A assume [measurable]: "A \<in> sets F"
  1048   fix A assume [measurable]: "A \<in> sets F"
  1049   then have A_meas [measurable]: "A \<in> sets M" by (meson set_mp subalg subalgebra_def)
  1049   then have A_meas [measurable]: "A \<in> sets M" by (meson subsetD subalg subalgebra_def)
  1050   have *: "integrable M (\<lambda>x. indicator A x * f i x)" for i
  1050   have *: "integrable M (\<lambda>x. indicator A x * f i x)" for i
  1051     using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)] by auto
  1051     using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> assms(1)] by auto
  1052   have **: "integrable M (\<lambda>x. indicator A x * real_cond_exp M F (f i) x)" for i
  1052   have **: "integrable M (\<lambda>x. indicator A x * real_cond_exp M F (f i) x)" for i
  1053     using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> real_cond_exp_int(1)[OF assms(1)]] by auto
  1053     using integrable_mult_indicator[OF \<open>A \<in> sets M\<close> real_cond_exp_int(1)[OF assms(1)]] by auto
  1054   have inti: "(\<integral>x. indicator A x * f i x \<partial>M) = (\<integral>x. indicator A x * real_cond_exp M F (f i) x \<partial>M)" for i
  1054   have inti: "(\<integral>x. indicator A x * f i x \<partial>M) = (\<integral>x. indicator A x * real_cond_exp M F (f i) x \<partial>M)" for i