src/HOL/Algebra/RingHom.thy
changeset 28823 dcbef866c9e2
parent 27717 21bbd410ba04
child 29237 e90d9d51106b
equal deleted inserted replaced
28822:7ca11ecbc4fb 28823:dcbef866c9e2
    15   assumes homh: "h \<in> ring_hom R S"
    15   assumes homh: "h \<in> ring_hom R S"
    16   notes hom_mult [simp] = ring_hom_mult [OF homh]
    16   notes hom_mult [simp] = ring_hom_mult [OF homh]
    17     and hom_one [simp] = ring_hom_one [OF homh]
    17     and hom_one [simp] = ring_hom_one [OF homh]
    18 
    18 
    19 interpretation ring_hom_cring \<subseteq> ring_hom_ring
    19 interpretation ring_hom_cring \<subseteq> ring_hom_ring
    20   by (unfold_locales, rule homh)
    20   proof qed (rule homh)
    21 
    21 
    22 interpretation ring_hom_ring \<subseteq> abelian_group_hom R S
    22 interpretation ring_hom_ring \<subseteq> abelian_group_hom R S
    23 apply (rule abelian_group_homI)
    23 apply (rule abelian_group_homI)
    24   apply (rule R.is_abelian_group)
    24   apply (rule R.is_abelian_group)
    25  apply (rule S.is_abelian_group)
    25  apply (rule S.is_abelian_group)