equal
deleted
inserted
replaced
166 |
166 |
167 end |
167 end |
168 |
168 |
169 interpretation class_semiring: gb_semiring |
169 interpretation class_semiring: gb_semiring |
170 ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"] |
170 ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"] |
171 by unfold_locales (auto simp add: ring_simps power_Suc) |
171 proof qed (auto simp add: ring_simps power_Suc) |
172 |
172 |
173 lemmas nat_arith = |
173 lemmas nat_arith = |
174 add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of |
174 add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of |
175 |
175 |
176 lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)" |
176 lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)" |
242 end |
242 end |
243 |
243 |
244 |
244 |
245 interpretation class_ring: gb_ring ["op +" "op *" "op ^" |
245 interpretation class_ring: gb_ring ["op +" "op *" "op ^" |
246 "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"] |
246 "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"] |
247 by unfold_locales simp_all |
247 proof qed simp_all |
248 |
248 |
249 |
249 |
250 declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *} |
250 declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *} |
251 |
251 |
252 use "Tools/Groebner_Basis/normalizer.ML" |
252 use "Tools/Groebner_Basis/normalizer.ML" |