src/HOL/Groebner_Basis.thy
changeset 28823 dcbef866c9e2
parent 28699 32b6a8f12c1c
child 28856 5e009a80fe6d
equal deleted inserted replaced
28822:7ca11ecbc4fb 28823:dcbef866c9e2
   166 
   166 
   167 end
   167 end
   168 
   168 
   169 interpretation class_semiring: gb_semiring
   169 interpretation class_semiring: gb_semiring
   170     ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"]
   170     ["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"]
   171   by unfold_locales (auto simp add: ring_simps power_Suc)
   171   proof qed (auto simp add: ring_simps power_Suc)
   172 
   172 
   173 lemmas nat_arith =
   173 lemmas nat_arith =
   174   add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
   174   add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
   175 
   175 
   176 lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)"
   176 lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)"
   242 end
   242 end
   243 
   243 
   244 
   244 
   245 interpretation class_ring: gb_ring ["op +" "op *" "op ^"
   245 interpretation class_ring: gb_ring ["op +" "op *" "op ^"
   246     "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"]
   246     "0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"]
   247   by unfold_locales simp_all
   247   proof qed simp_all
   248 
   248 
   249 
   249 
   250 declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *}
   250 declaration {* normalizer_funs @{thm class_ring.gb_ring_axioms'} *}
   251 
   251 
   252 use "Tools/Groebner_Basis/normalizer.ML"
   252 use "Tools/Groebner_Basis/normalizer.ML"