equal
deleted
inserted
replaced
29 lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D" |
29 lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D" |
30 by (simp add: fderiv_def) |
30 by (simp add: fderiv_def) |
31 |
31 |
32 lemma bounded_linear_zero: |
32 lemma bounded_linear_zero: |
33 "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)" |
33 "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)" |
34 proof (unfold_locales) |
34 proof |
35 show "(0::'b) = 0 + 0" by simp |
35 show "(0::'b) = 0 + 0" by simp |
36 fix r show "(0::'b) = scaleR r 0" by simp |
36 fix r show "(0::'b) = scaleR r 0" by simp |
37 have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp |
37 have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp |
38 thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" .. |
38 thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" .. |
39 qed |
39 qed |
41 lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)" |
41 lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)" |
42 by (simp add: fderiv_def bounded_linear_zero) |
42 by (simp add: fderiv_def bounded_linear_zero) |
43 |
43 |
44 lemma bounded_linear_ident: |
44 lemma bounded_linear_ident: |
45 "bounded_linear (\<lambda>x::'a::real_normed_vector. x)" |
45 "bounded_linear (\<lambda>x::'a::real_normed_vector. x)" |
46 proof (unfold_locales) |
46 proof |
47 fix x y :: 'a show "x + y = x + y" by simp |
47 fix x y :: 'a show "x + y = x + y" by simp |
48 fix r and x :: 'a show "scaleR r x = scaleR r x" by simp |
48 fix r and x :: 'a show "scaleR r x = scaleR r x" by simp |
49 have "\<forall>x::'a. norm x \<le> norm x * 1" by simp |
49 have "\<forall>x::'a. norm x \<le> norm x * 1" by simp |
50 thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" .. |
50 thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" .. |
51 qed |
51 qed |