src/HOL/Hyperreal/FrechetDeriv.thy
changeset 28823 dcbef866c9e2
parent 27611 2c01c0bdb385
child 28866 30cd9d89a0fb
equal deleted inserted replaced
28822:7ca11ecbc4fb 28823:dcbef866c9e2
    29 lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
    29 lemma FDERIV_bounded_linear: "FDERIV f x :> D \<Longrightarrow> bounded_linear D"
    30 by (simp add: fderiv_def)
    30 by (simp add: fderiv_def)
    31 
    31 
    32 lemma bounded_linear_zero:
    32 lemma bounded_linear_zero:
    33   "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
    33   "bounded_linear (\<lambda>x::'a::real_normed_vector. 0::'b::real_normed_vector)"
    34 proof (unfold_locales)
    34 proof
    35   show "(0::'b) = 0 + 0" by simp
    35   show "(0::'b) = 0 + 0" by simp
    36   fix r show "(0::'b) = scaleR r 0" by simp
    36   fix r show "(0::'b) = scaleR r 0" by simp
    37   have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
    37   have "\<forall>x::'a. norm (0::'b) \<le> norm x * 0" by simp
    38   thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
    38   thus "\<exists>K. \<forall>x::'a. norm (0::'b) \<le> norm x * K" ..
    39 qed
    39 qed
    41 lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
    41 lemma FDERIV_const: "FDERIV (\<lambda>x. k) x :> (\<lambda>h. 0)"
    42 by (simp add: fderiv_def bounded_linear_zero)
    42 by (simp add: fderiv_def bounded_linear_zero)
    43 
    43 
    44 lemma bounded_linear_ident:
    44 lemma bounded_linear_ident:
    45   "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
    45   "bounded_linear (\<lambda>x::'a::real_normed_vector. x)"
    46 proof (unfold_locales)
    46 proof
    47   fix x y :: 'a show "x + y = x + y" by simp
    47   fix x y :: 'a show "x + y = x + y" by simp
    48   fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
    48   fix r and x :: 'a show "scaleR r x = scaleR r x" by simp
    49   have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
    49   have "\<forall>x::'a. norm x \<le> norm x * 1" by simp
    50   thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
    50   thus "\<exists>K. \<forall>x::'a. norm x \<le> norm x * K" ..
    51 qed
    51 qed