src/ZF/Ordinal.thy
changeset 13155 dcbf6cb95534
parent 12114 a8e860c86252
child 13162 660a71e712af
equal deleted inserted replaced
13154:f1097ea60ba4 13155:dcbf6cb95534
     4     Copyright   1994  University of Cambridge
     4     Copyright   1994  University of Cambridge
     5 
     5 
     6 Ordinals in Zermelo-Fraenkel Set Theory 
     6 Ordinals in Zermelo-Fraenkel Set Theory 
     7 *)
     7 *)
     8 
     8 
     9 Ordinal = WF + Bool + equalities +
     9 theory Ordinal = WF + Bool + equalities:
    10 consts
    10 
    11   Memrel        :: i=>i
    11 constdefs
    12   Transset,Ord  :: i=>o
    12 
    13   "<"           :: [i,i] => o  (infixl 50) (*less than on ordinals*)
    13   Memrel        :: "i=>i"
    14   Limit         :: i=>o
    14     "Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
       
    15 
       
    16   Transset  :: "i=>o"
       
    17     "Transset(i) == ALL x:i. x<=i"
       
    18 
       
    19   Ord  :: "i=>o"
       
    20     "Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
       
    21 
       
    22   lt        :: "[i,i] => o"  (infixl "<" 50)   (*less-than on ordinals*)
       
    23     "i<j         == i:j & Ord(j)"
       
    24 
       
    25   Limit         :: "i=>o"
       
    26     "Limit(i)    == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"
    15 
    27 
    16 syntax
    28 syntax
    17   "le"          :: [i,i] => o  (infixl 50) (*less than or equals*)
    29   "le"          :: "[i,i] => o"  (infixl 50)   (*less-than or equals*)
    18 
    30 
    19 translations
    31 translations
    20   "x le y"      == "x < succ(y)"
    32   "x le y"      == "x < succ(y)"
    21 
    33 
    22 syntax (xsymbols)
    34 syntax (xsymbols)
    23   "op le"       :: [i,i] => o  (infixl "\\<le>" 50) (*less than or equals*)
    35   "op le"       :: "[i,i] => o"  (infixl "\<le>" 50)  (*less-than or equals*)
    24 
    36 
    25 defs
    37 
    26   Memrel_def    "Memrel(A)   == {z: A*A . EX x y. z=<x,y> & x:y }"
    38 (*** Rules for Transset ***)
    27   Transset_def  "Transset(i) == ALL x:i. x<=i"
    39 
    28   Ord_def       "Ord(i)      == Transset(i) & (ALL x:i. Transset(x))"
    40 (** Three neat characterisations of Transset **)
    29   lt_def        "i<j         == i:j & Ord(j)"
    41 
    30   Limit_def     "Limit(i)    == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)"
    42 lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)"
       
    43 by (unfold Transset_def, blast)
       
    44 
       
    45 lemma Transset_iff_Union_succ: "Transset(A) <-> Union(succ(A)) = A"
       
    46 apply (unfold Transset_def)
       
    47 apply (blast elim!: equalityE)
       
    48 done
       
    49 
       
    50 lemma Transset_iff_Union_subset: "Transset(A) <-> Union(A) <= A"
       
    51 by (unfold Transset_def, blast)
       
    52 
       
    53 (** Consequences of downwards closure **)
       
    54 
       
    55 lemma Transset_doubleton_D: 
       
    56     "[| Transset(C); {a,b}: C |] ==> a:C & b: C"
       
    57 by (unfold Transset_def, blast)
       
    58 
       
    59 lemma Transset_Pair_D:
       
    60     "[| Transset(C); <a,b>: C |] ==> a:C & b: C"
       
    61 apply (simp add: Pair_def)
       
    62 apply (blast dest: Transset_doubleton_D)
       
    63 done
       
    64 
       
    65 lemma Transset_includes_domain:
       
    66     "[| Transset(C); A*B <= C; b: B |] ==> A <= C"
       
    67 by (blast dest: Transset_Pair_D)
       
    68 
       
    69 lemma Transset_includes_range:
       
    70     "[| Transset(C); A*B <= C; a: A |] ==> B <= C"
       
    71 by (blast dest: Transset_Pair_D)
       
    72 
       
    73 (** Closure properties **)
       
    74 
       
    75 lemma Transset_0: "Transset(0)"
       
    76 by (unfold Transset_def, blast)
       
    77 
       
    78 lemma Transset_Un: 
       
    79     "[| Transset(i);  Transset(j) |] ==> Transset(i Un j)"
       
    80 by (unfold Transset_def, blast)
       
    81 
       
    82 lemma Transset_Int: 
       
    83     "[| Transset(i);  Transset(j) |] ==> Transset(i Int j)"
       
    84 by (unfold Transset_def, blast)
       
    85 
       
    86 lemma Transset_succ: "Transset(i) ==> Transset(succ(i))"
       
    87 by (unfold Transset_def, blast)
       
    88 
       
    89 lemma Transset_Pow: "Transset(i) ==> Transset(Pow(i))"
       
    90 by (unfold Transset_def, blast)
       
    91 
       
    92 lemma Transset_Union: "Transset(A) ==> Transset(Union(A))"
       
    93 by (unfold Transset_def, blast)
       
    94 
       
    95 lemma Transset_Union_family: 
       
    96     "[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))"
       
    97 by (unfold Transset_def, blast)
       
    98 
       
    99 lemma Transset_Inter_family: 
       
   100     "[| j:A;  !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))"
       
   101 by (unfold Transset_def, blast)
       
   102 
       
   103 (*** Natural Deduction rules for Ord ***)
       
   104 
       
   105 lemma OrdI:
       
   106     "[| Transset(i);  !!x. x:i ==> Transset(x) |]  ==>  Ord(i)"
       
   107 by (simp add: Ord_def) 
       
   108 
       
   109 lemma Ord_is_Transset: "Ord(i) ==> Transset(i)"
       
   110 by (simp add: Ord_def) 
       
   111 
       
   112 lemma Ord_contains_Transset: 
       
   113     "[| Ord(i);  j:i |] ==> Transset(j) "
       
   114 by (unfold Ord_def, blast)
       
   115 
       
   116 (*** Lemmas for ordinals ***)
       
   117 
       
   118 lemma Ord_in_Ord: "[| Ord(i);  j:i |] ==> Ord(j)"
       
   119 by (unfold Ord_def Transset_def, blast)
       
   120 
       
   121 (* Ord(succ(j)) ==> Ord(j) *)
       
   122 lemmas Ord_succD = Ord_in_Ord [OF _ succI1]
       
   123 
       
   124 lemma Ord_subset_Ord: "[| Ord(i);  Transset(j);  j<=i |] ==> Ord(j)"
       
   125 by (simp add: Ord_def Transset_def, blast)
       
   126 
       
   127 lemma OrdmemD: "[| j:i;  Ord(i) |] ==> j<=i"
       
   128 by (unfold Ord_def Transset_def, blast)
       
   129 
       
   130 lemma Ord_trans: "[| i:j;  j:k;  Ord(k) |] ==> i:k"
       
   131 by (blast dest: OrdmemD)
       
   132 
       
   133 lemma Ord_succ_subsetI: "[| i:j;  Ord(j) |] ==> succ(i) <= j"
       
   134 by (blast dest: OrdmemD)
       
   135 
       
   136 
       
   137 (*** The construction of ordinals: 0, succ, Union ***)
       
   138 
       
   139 lemma Ord_0 [iff,TC]: "Ord(0)"
       
   140 by (blast intro: OrdI Transset_0)
       
   141 
       
   142 lemma Ord_succ [TC]: "Ord(i) ==> Ord(succ(i))"
       
   143 by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset)
       
   144 
       
   145 lemmas Ord_1 = Ord_0 [THEN Ord_succ]
       
   146 
       
   147 lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)"
       
   148 by (blast intro: Ord_succ dest!: Ord_succD)
       
   149 
       
   150 lemma Ord_Un [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Un j)"
       
   151 apply (unfold Ord_def)
       
   152 apply (blast intro!: Transset_Un)
       
   153 done
       
   154 
       
   155 lemma Ord_Int [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Int j)"
       
   156 apply (unfold Ord_def)
       
   157 apply (blast intro!: Transset_Int)
       
   158 done
       
   159 
       
   160 
       
   161 lemma Ord_Inter:
       
   162     "[| j:A;  !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))"
       
   163 apply (rule Transset_Inter_family [THEN OrdI], assumption)
       
   164 apply (blast intro: Ord_is_Transset) 
       
   165 apply (blast intro: Ord_contains_Transset) 
       
   166 done
       
   167 
       
   168 lemma Ord_INT:
       
   169     "[| j:A;  !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))"
       
   170 by (rule RepFunI [THEN Ord_Inter], assumption, blast) 
       
   171 
       
   172 (*There is no set of all ordinals, for then it would contain itself*)
       
   173 lemma ON_class: "~ (ALL i. i:X <-> Ord(i))"
       
   174 apply (rule notI)
       
   175 apply (frule_tac x = "X" in spec)
       
   176 apply (safe elim!: mem_irrefl)
       
   177 apply (erule swap, rule OrdI [OF _ Ord_is_Transset])
       
   178 apply (simp add: Transset_def)
       
   179 apply (blast intro: Ord_in_Ord)+
       
   180 done
       
   181 
       
   182 (*** < is 'less than' for ordinals ***)
       
   183 
       
   184 lemma ltI: "[| i:j;  Ord(j) |] ==> i<j"
       
   185 by (unfold lt_def, blast)
       
   186 
       
   187 lemma ltE:
       
   188     "[| i<j;  [| i:j;  Ord(i);  Ord(j) |] ==> P |] ==> P"
       
   189 apply (unfold lt_def)
       
   190 apply (blast intro: Ord_in_Ord)
       
   191 done
       
   192 
       
   193 lemma ltD: "i<j ==> i:j"
       
   194 by (erule ltE, assumption)
       
   195 
       
   196 lemma not_lt0 [simp]: "~ i<0"
       
   197 by (unfold lt_def, blast)
       
   198 
       
   199 lemma lt_Ord: "j<i ==> Ord(j)"
       
   200 by (erule ltE, assumption)
       
   201 
       
   202 lemma lt_Ord2: "j<i ==> Ord(i)"
       
   203 by (erule ltE, assumption)
       
   204 
       
   205 (* "ja le j ==> Ord(j)" *)
       
   206 lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD]
       
   207 
       
   208 (* i<0 ==> R *)
       
   209 lemmas lt0E = not_lt0 [THEN notE, elim!]
       
   210 
       
   211 lemma lt_trans: "[| i<j;  j<k |] ==> i<k"
       
   212 by (blast intro!: ltI elim!: ltE intro: Ord_trans)
       
   213 
       
   214 lemma lt_not_sym: "i<j ==> ~ (j<i)"
       
   215 apply (unfold lt_def)
       
   216 apply (blast elim: mem_asym)
       
   217 done
       
   218 
       
   219 (* [| i<j;  ~P ==> j<i |] ==> P *)
       
   220 lemmas lt_asym = lt_not_sym [THEN swap]
       
   221 
       
   222 lemma lt_irrefl [elim!]: "i<i ==> P"
       
   223 by (blast intro: lt_asym)
       
   224 
       
   225 lemma lt_not_refl: "~ i<i"
       
   226 apply (rule notI)
       
   227 apply (erule lt_irrefl)
       
   228 done
       
   229 
       
   230 
       
   231 (** le is less than or equals;  recall  i le j  abbrevs  i<succ(j) !! **)
       
   232 
       
   233 lemma le_iff: "i le j <-> i<j | (i=j & Ord(j))"
       
   234 by (unfold lt_def, blast)
       
   235 
       
   236 (*Equivalently, i<j ==> i < succ(j)*)
       
   237 lemma leI: "i<j ==> i le j"
       
   238 by (simp (no_asm_simp) add: le_iff)
       
   239 
       
   240 lemma le_eqI: "[| i=j;  Ord(j) |] ==> i le j"
       
   241 by (simp (no_asm_simp) add: le_iff)
       
   242 
       
   243 lemmas le_refl = refl [THEN le_eqI]
       
   244 
       
   245 lemma le_refl_iff [iff]: "i le i <-> Ord(i)"
       
   246 by (simp (no_asm_simp) add: lt_not_refl le_iff)
       
   247 
       
   248 lemma leCI: "(~ (i=j & Ord(j)) ==> i<j) ==> i le j"
       
   249 by (simp add: le_iff, blast)
       
   250 
       
   251 lemma leE:
       
   252     "[| i le j;  i<j ==> P;  [| i=j;  Ord(j) |] ==> P |] ==> P"
       
   253 by (simp add: le_iff, blast)
       
   254 
       
   255 lemma le_anti_sym: "[| i le j;  j le i |] ==> i=j"
       
   256 apply (simp add: le_iff)
       
   257 apply (blast elim: lt_asym)
       
   258 done
       
   259 
       
   260 lemma le0_iff [simp]: "i le 0 <-> i=0"
       
   261 by (blast elim!: leE)
       
   262 
       
   263 lemmas le0D = le0_iff [THEN iffD1, dest!]
       
   264 
       
   265 (*** Natural Deduction rules for Memrel ***)
       
   266 
       
   267 (*The lemmas MemrelI/E give better speed than [iff] here*)
       
   268 lemma Memrel_iff [simp]: "<a,b> : Memrel(A) <-> a:b & a:A & b:A"
       
   269 by (unfold Memrel_def, blast)
       
   270 
       
   271 lemma MemrelI [intro!]: "[| a: b;  a: A;  b: A |] ==> <a,b> : Memrel(A)"
       
   272 by auto
       
   273 
       
   274 lemma MemrelE [elim!]:
       
   275     "[| <a,b> : Memrel(A);   
       
   276         [| a: A;  b: A;  a:b |]  ==> P |]  
       
   277      ==> P"
       
   278 by auto
       
   279 
       
   280 lemma Memrel_type: "Memrel(A) <= A*A"
       
   281 by (unfold Memrel_def, blast)
       
   282 
       
   283 lemma Memrel_mono: "A<=B ==> Memrel(A) <= Memrel(B)"
       
   284 by (unfold Memrel_def, blast)
       
   285 
       
   286 lemma Memrel_0 [simp]: "Memrel(0) = 0"
       
   287 by (unfold Memrel_def, blast)
       
   288 
       
   289 lemma Memrel_1 [simp]: "Memrel(1) = 0"
       
   290 by (unfold Memrel_def, blast)
       
   291 
       
   292 (*The membership relation (as a set) is well-founded.
       
   293   Proof idea: show A<=B by applying the foundation axiom to A-B *)
       
   294 lemma wf_Memrel: "wf(Memrel(A))"
       
   295 apply (unfold wf_def)
       
   296 apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast) 
       
   297 done
       
   298 
       
   299 (*Transset(i) does not suffice, though ALL j:i.Transset(j) does*)
       
   300 lemma trans_Memrel: 
       
   301     "Ord(i) ==> trans(Memrel(i))"
       
   302 by (unfold Ord_def Transset_def trans_def, blast)
       
   303 
       
   304 (*If Transset(A) then Memrel(A) internalizes the membership relation below A*)
       
   305 lemma Transset_Memrel_iff: 
       
   306     "Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A"
       
   307 by (unfold Transset_def, blast)
       
   308 
       
   309 
       
   310 (*** Transfinite induction ***)
       
   311 
       
   312 (*Epsilon induction over a transitive set*)
       
   313 lemma Transset_induct: 
       
   314     "[| i: k;  Transset(k);                           
       
   315         !!x.[| x: k;  ALL y:x. P(y) |] ==> P(x) |]
       
   316      ==>  P(i)"
       
   317 apply (simp add: Transset_def) 
       
   318 apply (erule wf_Memrel [THEN wf_induct2], blast)
       
   319 apply blast 
       
   320 done
       
   321 
       
   322 (*Induction over an ordinal*)
       
   323 lemmas Ord_induct = Transset_induct [OF _ Ord_is_Transset]
       
   324 
       
   325 (*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
       
   326 
       
   327 lemma trans_induct:
       
   328     "[| Ord(i);  
       
   329         !!x.[| Ord(x);  ALL y:x. P(y) |] ==> P(x) |]
       
   330      ==>  P(i)"
       
   331 apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption)
       
   332 apply (blast intro: Ord_succ [THEN Ord_in_Ord]) 
       
   333 done
       
   334 
       
   335 
       
   336 (*** Fundamental properties of the epsilon ordering (< on ordinals) ***)
       
   337 
       
   338 
       
   339 (** Proving that < is a linear ordering on the ordinals **)
       
   340 
       
   341 lemma Ord_linear [rule_format]:
       
   342      "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)"
       
   343 apply (erule trans_induct)
       
   344 apply (rule impI [THEN allI])
       
   345 apply (erule_tac i=j in trans_induct) 
       
   346 apply (blast dest: Ord_trans) 
       
   347 done
       
   348 
       
   349 (*The trichotomy law for ordinals!*)
       
   350 lemma Ord_linear_lt:
       
   351     "[| Ord(i);  Ord(j);  i<j ==> P;  i=j ==> P;  j<i ==> P |] ==> P"
       
   352 apply (simp add: lt_def) 
       
   353 apply (rule_tac i1=i and j1=j in Ord_linear [THEN disjE], blast+)
       
   354 done
       
   355 
       
   356 lemma Ord_linear2:
       
   357     "[| Ord(i);  Ord(j);  i<j ==> P;  j le i ==> P |]  ==> P"
       
   358 apply (rule_tac i = "i" and j = "j" in Ord_linear_lt)
       
   359 apply (blast intro: leI le_eqI sym ) +
       
   360 done
       
   361 
       
   362 lemma Ord_linear_le:
       
   363     "[| Ord(i);  Ord(j);  i le j ==> P;  j le i ==> P |]  ==> P"
       
   364 apply (rule_tac i = "i" and j = "j" in Ord_linear_lt)
       
   365 apply (blast intro: leI le_eqI ) +
       
   366 done
       
   367 
       
   368 lemma le_imp_not_lt: "j le i ==> ~ i<j"
       
   369 by (blast elim!: leE elim: lt_asym)
       
   370 
       
   371 lemma not_lt_imp_le: "[| ~ i<j;  Ord(i);  Ord(j) |] ==> j le i"
       
   372 by (rule_tac i = "i" and j = "j" in Ord_linear2, auto)
       
   373 
       
   374 (** Some rewrite rules for <, le **)
       
   375 
       
   376 lemma Ord_mem_iff_lt: "Ord(j) ==> i:j <-> i<j"
       
   377 by (unfold lt_def, blast)
       
   378 
       
   379 lemma not_lt_iff_le: "[| Ord(i);  Ord(j) |] ==> ~ i<j <-> j le i"
       
   380 by (blast dest: le_imp_not_lt not_lt_imp_le)
       
   381 
       
   382 lemma not_le_iff_lt: "[| Ord(i);  Ord(j) |] ==> ~ i le j <-> j<i"
       
   383 by (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym])
       
   384 
       
   385 (*This is identical to 0<succ(i) *)
       
   386 lemma Ord_0_le: "Ord(i) ==> 0 le i"
       
   387 by (erule not_lt_iff_le [THEN iffD1], auto)
       
   388 
       
   389 lemma Ord_0_lt: "[| Ord(i);  i~=0 |] ==> 0<i"
       
   390 apply (erule not_le_iff_lt [THEN iffD1])
       
   391 apply (rule Ord_0, blast)
       
   392 done
       
   393 
       
   394 lemma Ord_0_lt_iff: "Ord(i) ==> i~=0 <-> 0<i"
       
   395 by (blast intro: Ord_0_lt)
       
   396 
       
   397 
       
   398 (*** Results about less-than or equals ***)
       
   399 
       
   400 (** For ordinals, j<=i (subset) implies j le i (less-than or equals) **)
       
   401 
       
   402 lemma zero_le_succ_iff [iff]: "0 le succ(x) <-> Ord(x)"
       
   403 by (blast intro: Ord_0_le elim: ltE)
       
   404 
       
   405 lemma subset_imp_le: "[| j<=i;  Ord(i);  Ord(j) |] ==> j le i"
       
   406 apply (rule not_lt_iff_le [THEN iffD1], assumption)
       
   407 apply assumption
       
   408 apply (blast elim: ltE mem_irrefl)
       
   409 done
       
   410 
       
   411 lemma le_imp_subset: "i le j ==> i<=j"
       
   412 by (blast dest: OrdmemD elim: ltE leE)
       
   413 
       
   414 lemma le_subset_iff: "j le i <-> j<=i & Ord(i) & Ord(j)"
       
   415 by (blast dest: subset_imp_le le_imp_subset elim: ltE)
       
   416 
       
   417 lemma le_succ_iff: "i le succ(j) <-> i le j | i=succ(j) & Ord(i)"
       
   418 apply (simp (no_asm) add: le_iff)
       
   419 apply blast
       
   420 done
       
   421 
       
   422 (*Just a variant of subset_imp_le*)
       
   423 lemma all_lt_imp_le: "[| Ord(i);  Ord(j);  !!x. x<j ==> x<i |] ==> j le i"
       
   424 by (blast intro: not_lt_imp_le dest: lt_irrefl)
       
   425 
       
   426 (** Transitive laws **)
       
   427 
       
   428 lemma lt_trans1: "[| i le j;  j<k |] ==> i<k"
       
   429 by (blast elim!: leE intro: lt_trans)
       
   430 
       
   431 lemma lt_trans2: "[| i<j;  j le k |] ==> i<k"
       
   432 by (blast elim!: leE intro: lt_trans)
       
   433 
       
   434 lemma le_trans: "[| i le j;  j le k |] ==> i le k"
       
   435 by (blast intro: lt_trans1)
       
   436 
       
   437 lemma succ_leI: "i<j ==> succ(i) le j"
       
   438 apply (rule not_lt_iff_le [THEN iffD1]) 
       
   439 apply (blast elim: ltE leE lt_asym)+
       
   440 done
       
   441 
       
   442 (*Identical to  succ(i) < succ(j) ==> i<j  *)
       
   443 lemma succ_leE: "succ(i) le j ==> i<j"
       
   444 apply (rule not_le_iff_lt [THEN iffD1])
       
   445 apply (blast elim: ltE leE lt_asym)+
       
   446 done
       
   447 
       
   448 lemma succ_le_iff [iff]: "succ(i) le j <-> i<j"
       
   449 by (blast intro: succ_leI succ_leE)
       
   450 
       
   451 lemma succ_le_imp_le: "succ(i) le succ(j) ==> i le j"
       
   452 by (blast dest!: succ_leE)
       
   453 
       
   454 lemma lt_subset_trans: "[| i <= j;  j<k;  Ord(i) |] ==> i<k"
       
   455 apply (rule subset_imp_le [THEN lt_trans1]) 
       
   456 apply (blast intro: elim: ltE) +
       
   457 done
       
   458 
       
   459 (** Union and Intersection **)
       
   460 
       
   461 lemma Un_upper1_le: "[| Ord(i); Ord(j) |] ==> i le i Un j"
       
   462 by (rule Un_upper1 [THEN subset_imp_le], auto)
       
   463 
       
   464 lemma Un_upper2_le: "[| Ord(i); Ord(j) |] ==> j le i Un j"
       
   465 by (rule Un_upper2 [THEN subset_imp_le], auto)
       
   466 
       
   467 (*Replacing k by succ(k') yields the similar rule for le!*)
       
   468 lemma Un_least_lt: "[| i<k;  j<k |] ==> i Un j < k"
       
   469 apply (rule_tac i = "i" and j = "j" in Ord_linear_le)
       
   470 apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord) 
       
   471 done
       
   472 
       
   473 lemma Un_least_lt_iff: "[| Ord(i); Ord(j) |] ==> i Un j < k  <->  i<k & j<k"
       
   474 apply (safe intro!: Un_least_lt)
       
   475 apply (rule_tac [2] Un_upper2_le [THEN lt_trans1])
       
   476 apply (rule Un_upper1_le [THEN lt_trans1], auto) 
       
   477 done
       
   478 
       
   479 lemma Un_least_mem_iff:
       
   480     "[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k  <->  i:k & j:k"
       
   481 apply (insert Un_least_lt_iff [of i j k]) 
       
   482 apply (simp add: lt_def)
       
   483 done
       
   484 
       
   485 (*Replacing k by succ(k') yields the similar rule for le!*)
       
   486 lemma Int_greatest_lt: "[| i<k;  j<k |] ==> i Int j < k"
       
   487 apply (rule_tac i = "i" and j = "j" in Ord_linear_le)
       
   488 apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord) 
       
   489 done
       
   490 
       
   491 (*FIXME: the Intersection duals are missing!*)
       
   492 
       
   493 (*** Results about limits ***)
       
   494 
       
   495 lemma Ord_Union: "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))"
       
   496 apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI])
       
   497 apply (blast intro: Ord_contains_Transset)+
       
   498 done
       
   499 
       
   500 lemma Ord_UN: "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))"
       
   501 by (rule Ord_Union, blast)
       
   502 
       
   503 (* No < version; consider (UN i:nat.i)=nat *)
       
   504 lemma UN_least_le:
       
   505     "[| Ord(i);  !!x. x:A ==> b(x) le i |] ==> (UN x:A. b(x)) le i"
       
   506 apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le])
       
   507 apply (blast intro: Ord_UN elim: ltE)+
       
   508 done
       
   509 
       
   510 lemma UN_succ_least_lt:
       
   511     "[| j<i;  !!x. x:A ==> b(x)<j |] ==> (UN x:A. succ(b(x))) < i"
       
   512 apply (rule ltE, assumption)
       
   513 apply (rule UN_least_le [THEN lt_trans2])
       
   514 apply (blast intro: succ_leI)+
       
   515 done
       
   516 
       
   517 lemma UN_upper_le:
       
   518      "[| a: A;  i le b(a);  Ord(UN x:A. b(x)) |] ==> i le (UN x:A. b(x))"
       
   519 apply (frule ltD)
       
   520 apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le])
       
   521 apply (blast intro: lt_Ord UN_upper)+
       
   522 done
       
   523 
       
   524 lemma le_implies_UN_le_UN:
       
   525     "[| !!x. x:A ==> c(x) le d(x) |] ==> (UN x:A. c(x)) le (UN x:A. d(x))"
       
   526 apply (rule UN_least_le)
       
   527 apply (rule_tac [2] UN_upper_le)
       
   528 apply (blast intro: Ord_UN le_Ord2)+ 
       
   529 done
       
   530 
       
   531 lemma Ord_equality: "Ord(i) ==> (UN y:i. succ(y)) = i"
       
   532 by (blast intro: Ord_trans)
       
   533 
       
   534 (*Holds for all transitive sets, not just ordinals*)
       
   535 lemma Ord_Union_subset: "Ord(i) ==> Union(i) <= i"
       
   536 by (blast intro: Ord_trans)
       
   537 
       
   538 
       
   539 (*** Limit ordinals -- general properties ***)
       
   540 
       
   541 lemma Limit_Union_eq: "Limit(i) ==> Union(i) = i"
       
   542 apply (unfold Limit_def)
       
   543 apply (fast intro!: ltI elim!: ltE elim: Ord_trans)
       
   544 done
       
   545 
       
   546 lemma Limit_is_Ord: "Limit(i) ==> Ord(i)"
       
   547 apply (unfold Limit_def)
       
   548 apply (erule conjunct1)
       
   549 done
       
   550 
       
   551 lemma Limit_has_0: "Limit(i) ==> 0 < i"
       
   552 apply (unfold Limit_def)
       
   553 apply (erule conjunct2 [THEN conjunct1])
       
   554 done
       
   555 
       
   556 lemma Limit_has_succ: "[| Limit(i);  j<i |] ==> succ(j) < i"
       
   557 by (unfold Limit_def, blast)
       
   558 
       
   559 lemma non_succ_LimitI: 
       
   560     "[| 0<i;  ALL y. succ(y) ~= i |] ==> Limit(i)"
       
   561 apply (unfold Limit_def)
       
   562 apply (safe del: subsetI)
       
   563 apply (rule_tac [2] not_le_iff_lt [THEN iffD1])
       
   564 apply (simp_all add: lt_Ord lt_Ord2) 
       
   565 apply (blast elim: leE lt_asym)
       
   566 done
       
   567 
       
   568 lemma succ_LimitE [elim!]: "Limit(succ(i)) ==> P"
       
   569 apply (rule lt_irrefl)
       
   570 apply (rule Limit_has_succ, assumption)
       
   571 apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl])
       
   572 done
       
   573 
       
   574 lemma not_succ_Limit [simp]: "~ Limit(succ(i))"
       
   575 by blast
       
   576 
       
   577 lemma Limit_le_succD: "[| Limit(i);  i le succ(j) |] ==> i le j"
       
   578 by (blast elim!: leE)
       
   579 
       
   580 (** Traditional 3-way case analysis on ordinals **)
       
   581 
       
   582 lemma Ord_cases_disj: "Ord(i) ==> i=0 | (EX j. Ord(j) & i=succ(j)) | Limit(i)"
       
   583 by (blast intro!: non_succ_LimitI Ord_0_lt)
       
   584 
       
   585 lemma Ord_cases:
       
   586     "[| Ord(i);                  
       
   587         i=0                          ==> P;      
       
   588         !!j. [| Ord(j); i=succ(j) |] ==> P;      
       
   589         Limit(i)                     ==> P       
       
   590      |] ==> P"
       
   591 by (drule Ord_cases_disj, blast)  
       
   592 
       
   593 lemma trans_induct3:
       
   594      "[| Ord(i);                 
       
   595          P(0);                   
       
   596          !!x. [| Ord(x);  P(x) |] ==> P(succ(x));        
       
   597          !!x. [| Limit(x);  ALL y:x. P(y) |] ==> P(x)    
       
   598       |] ==> P(i)"
       
   599 apply (erule trans_induct)
       
   600 apply (erule Ord_cases, blast+)
       
   601 done
       
   602 
       
   603 ML 
       
   604 {*
       
   605 val Memrel_def = thm "Memrel_def";
       
   606 val Transset_def = thm "Transset_def";
       
   607 val Ord_def = thm "Ord_def";
       
   608 val lt_def = thm "lt_def";
       
   609 val Limit_def = thm "Limit_def";
       
   610 
       
   611 val Transset_iff_Pow = thm "Transset_iff_Pow";
       
   612 val Transset_iff_Union_succ = thm "Transset_iff_Union_succ";
       
   613 val Transset_iff_Union_subset = thm "Transset_iff_Union_subset";
       
   614 val Transset_doubleton_D = thm "Transset_doubleton_D";
       
   615 val Transset_Pair_D = thm "Transset_Pair_D";
       
   616 val Transset_includes_domain = thm "Transset_includes_domain";
       
   617 val Transset_includes_range = thm "Transset_includes_range";
       
   618 val Transset_0 = thm "Transset_0";
       
   619 val Transset_Un = thm "Transset_Un";
       
   620 val Transset_Int = thm "Transset_Int";
       
   621 val Transset_succ = thm "Transset_succ";
       
   622 val Transset_Pow = thm "Transset_Pow";
       
   623 val Transset_Union = thm "Transset_Union";
       
   624 val Transset_Union_family = thm "Transset_Union_family";
       
   625 val Transset_Inter_family = thm "Transset_Inter_family";
       
   626 val OrdI = thm "OrdI";
       
   627 val Ord_is_Transset = thm "Ord_is_Transset";
       
   628 val Ord_contains_Transset = thm "Ord_contains_Transset";
       
   629 val Ord_in_Ord = thm "Ord_in_Ord";
       
   630 val Ord_succD = thm "Ord_succD";
       
   631 val Ord_subset_Ord = thm "Ord_subset_Ord";
       
   632 val OrdmemD = thm "OrdmemD";
       
   633 val Ord_trans = thm "Ord_trans";
       
   634 val Ord_succ_subsetI = thm "Ord_succ_subsetI";
       
   635 val Ord_0 = thm "Ord_0";
       
   636 val Ord_succ = thm "Ord_succ";
       
   637 val Ord_1 = thm "Ord_1";
       
   638 val Ord_succ_iff = thm "Ord_succ_iff";
       
   639 val Ord_Un = thm "Ord_Un";
       
   640 val Ord_Int = thm "Ord_Int";
       
   641 val Ord_Inter = thm "Ord_Inter";
       
   642 val Ord_INT = thm "Ord_INT";
       
   643 val ON_class = thm "ON_class";
       
   644 val ltI = thm "ltI";
       
   645 val ltE = thm "ltE";
       
   646 val ltD = thm "ltD";
       
   647 val not_lt0 = thm "not_lt0";
       
   648 val lt_Ord = thm "lt_Ord";
       
   649 val lt_Ord2 = thm "lt_Ord2";
       
   650 val le_Ord2 = thm "le_Ord2";
       
   651 val lt0E = thm "lt0E";
       
   652 val lt_trans = thm "lt_trans";
       
   653 val lt_not_sym = thm "lt_not_sym";
       
   654 val lt_asym = thm "lt_asym";
       
   655 val lt_irrefl = thm "lt_irrefl";
       
   656 val lt_not_refl = thm "lt_not_refl";
       
   657 val le_iff = thm "le_iff";
       
   658 val leI = thm "leI";
       
   659 val le_eqI = thm "le_eqI";
       
   660 val le_refl = thm "le_refl";
       
   661 val le_refl_iff = thm "le_refl_iff";
       
   662 val leCI = thm "leCI";
       
   663 val leE = thm "leE";
       
   664 val le_anti_sym = thm "le_anti_sym";
       
   665 val le0_iff = thm "le0_iff";
       
   666 val le0D = thm "le0D";
       
   667 val Memrel_iff = thm "Memrel_iff";
       
   668 val MemrelI = thm "MemrelI";
       
   669 val MemrelE = thm "MemrelE";
       
   670 val Memrel_type = thm "Memrel_type";
       
   671 val Memrel_mono = thm "Memrel_mono";
       
   672 val Memrel_0 = thm "Memrel_0";
       
   673 val Memrel_1 = thm "Memrel_1";
       
   674 val wf_Memrel = thm "wf_Memrel";
       
   675 val trans_Memrel = thm "trans_Memrel";
       
   676 val Transset_Memrel_iff = thm "Transset_Memrel_iff";
       
   677 val Transset_induct = thm "Transset_induct";
       
   678 val Ord_induct = thm "Ord_induct";
       
   679 val trans_induct = thm "trans_induct";
       
   680 val Ord_linear = thm "Ord_linear";
       
   681 val Ord_linear_lt = thm "Ord_linear_lt";
       
   682 val Ord_linear2 = thm "Ord_linear2";
       
   683 val Ord_linear_le = thm "Ord_linear_le";
       
   684 val le_imp_not_lt = thm "le_imp_not_lt";
       
   685 val not_lt_imp_le = thm "not_lt_imp_le";
       
   686 val Ord_mem_iff_lt = thm "Ord_mem_iff_lt";
       
   687 val not_lt_iff_le = thm "not_lt_iff_le";
       
   688 val not_le_iff_lt = thm "not_le_iff_lt";
       
   689 val Ord_0_le = thm "Ord_0_le";
       
   690 val Ord_0_lt = thm "Ord_0_lt";
       
   691 val Ord_0_lt_iff = thm "Ord_0_lt_iff";
       
   692 val zero_le_succ_iff = thm "zero_le_succ_iff";
       
   693 val subset_imp_le = thm "subset_imp_le";
       
   694 val le_imp_subset = thm "le_imp_subset";
       
   695 val le_subset_iff = thm "le_subset_iff";
       
   696 val le_succ_iff = thm "le_succ_iff";
       
   697 val all_lt_imp_le = thm "all_lt_imp_le";
       
   698 val lt_trans1 = thm "lt_trans1";
       
   699 val lt_trans2 = thm "lt_trans2";
       
   700 val le_trans = thm "le_trans";
       
   701 val succ_leI = thm "succ_leI";
       
   702 val succ_leE = thm "succ_leE";
       
   703 val succ_le_iff = thm "succ_le_iff";
       
   704 val succ_le_imp_le = thm "succ_le_imp_le";
       
   705 val lt_subset_trans = thm "lt_subset_trans";
       
   706 val Un_upper1_le = thm "Un_upper1_le";
       
   707 val Un_upper2_le = thm "Un_upper2_le";
       
   708 val Un_least_lt = thm "Un_least_lt";
       
   709 val Un_least_lt_iff = thm "Un_least_lt_iff";
       
   710 val Un_least_mem_iff = thm "Un_least_mem_iff";
       
   711 val Int_greatest_lt = thm "Int_greatest_lt";
       
   712 val Ord_Union = thm "Ord_Union";
       
   713 val Ord_UN = thm "Ord_UN";
       
   714 val UN_least_le = thm "UN_least_le";
       
   715 val UN_succ_least_lt = thm "UN_succ_least_lt";
       
   716 val UN_upper_le = thm "UN_upper_le";
       
   717 val le_implies_UN_le_UN = thm "le_implies_UN_le_UN";
       
   718 val Ord_equality = thm "Ord_equality";
       
   719 val Ord_Union_subset = thm "Ord_Union_subset";
       
   720 val Limit_Union_eq = thm "Limit_Union_eq";
       
   721 val Limit_is_Ord = thm "Limit_is_Ord";
       
   722 val Limit_has_0 = thm "Limit_has_0";
       
   723 val Limit_has_succ = thm "Limit_has_succ";
       
   724 val non_succ_LimitI = thm "non_succ_LimitI";
       
   725 val succ_LimitE = thm "succ_LimitE";
       
   726 val not_succ_Limit = thm "not_succ_Limit";
       
   727 val Limit_le_succD = thm "Limit_le_succD";
       
   728 val Ord_cases_disj = thm "Ord_cases_disj";
       
   729 val Ord_cases = thm "Ord_cases";
       
   730 val trans_induct3 = thm "trans_induct3";
       
   731 *}
    31 
   732 
    32 end
   733 end