src/Provers/coherent.ML
changeset 28326 ddd53738dae8
child 28339 6f6fa16543f5
equal deleted inserted replaced
28325:0b6b83ec8458 28326:ddd53738dae8
       
     1 (*  Title:      Provers/coherent.ML
       
     2     ID:         $Id$
       
     3     Author:     Stefan Berghofer, TU Muenchen
       
     4                 Marc Bezem, Institutt for Informatikk, Universitetet i Bergen 
       
     5 
       
     6 Prover for coherent logic, see e.g.
       
     7 
       
     8   Marc Bezem and Thierry Coquand, Automating Coherent Logic, LPAR 2005
       
     9 
       
    10 for a description of the algorithm.
       
    11 *)
       
    12 
       
    13 signature COHERENT_DATA =
       
    14 sig
       
    15   val atomize_elimL: thm
       
    16   val atomize_exL: thm
       
    17   val atomize_conjL: thm
       
    18   val atomize_disjL: thm
       
    19   val operator_names: string list
       
    20 end;
       
    21 
       
    22 signature COHERENT =
       
    23 sig
       
    24   val verbose: bool ref
       
    25   val show_facts: bool ref
       
    26   val coherent_tac: thm list -> Proof.context -> int -> tactic
       
    27   val coherent_meth: thm list -> Proof.context -> Proof.method
       
    28   val setup: theory -> theory
       
    29 end;
       
    30 
       
    31 functor CoherentFun(Data: COHERENT_DATA) : COHERENT =
       
    32 struct
       
    33 
       
    34 val verbose = ref false;
       
    35 
       
    36 fun message f = if !verbose then tracing (f ()) else ();
       
    37 
       
    38 datatype cl_prf =
       
    39   ClPrf of thm * (Type.tyenv * Envir.tenv) * ((indexname * typ) * term) list *
       
    40   int list * (term list * cl_prf) list;
       
    41 
       
    42 fun is_atomic t = null (term_consts t inter Data.operator_names);
       
    43 
       
    44 local open Conv in
       
    45 
       
    46 fun rulify_elim_conv ct =
       
    47   if is_atomic (Logic.strip_imp_concl (term_of ct)) then all_conv ct
       
    48   else concl_conv (length (Logic.strip_imp_prems (term_of ct)))
       
    49     (rewr_conv (symmetric Data.atomize_elimL) then_conv
       
    50      MetaSimplifier.rewrite true (map symmetric
       
    51        [Data.atomize_exL, Data.atomize_conjL, Data.atomize_disjL])) ct
       
    52 
       
    53 end;
       
    54 
       
    55 fun rulify_elim th = MetaSimplifier.norm_hhf (Conv.fconv_rule rulify_elim_conv th);
       
    56 
       
    57 (* Decompose elimination rule of the form
       
    58    A1 ==> ... ==> Am ==> (!!xs1. Bs1 ==> P) ==> ... ==> (!!xsn. Bsn ==> P) ==> P
       
    59 *)
       
    60 fun dest_elim prop =
       
    61   let
       
    62     val prems = Logic.strip_imp_prems prop;
       
    63     val concl = Logic.strip_imp_concl prop;
       
    64     val (prems1, prems2) =
       
    65       take_suffix (fn t => Logic.strip_assums_concl t = concl) prems;
       
    66   in
       
    67     (prems1,
       
    68      if null prems2 then [([], [concl])]
       
    69      else map (fn t =>
       
    70        (map snd (Logic.strip_params t), Logic.strip_assums_hyp t)) prems2)
       
    71   end;
       
    72 
       
    73 fun mk_rule th =
       
    74   let
       
    75     val th' = rulify_elim th;
       
    76     val (prems, cases) = dest_elim (prop_of th')
       
    77   in (th', prems, cases) end;
       
    78 
       
    79 fun mk_dom ts = fold (fn t =>
       
    80   Typtab.map_default (fastype_of t, []) (fn us => us @ [t])) ts Typtab.empty;
       
    81 
       
    82 val empty_env = (Vartab.empty, Vartab.empty);
       
    83 
       
    84 (* Find matcher that makes conjunction valid in given state *)
       
    85 fun valid_conj ctxt facts env [] = Seq.single (env, [])
       
    86   | valid_conj ctxt facts env (t :: ts) =
       
    87       Seq.maps (fn (u, x) => Seq.map (apsnd (cons x))
       
    88         (valid_conj ctxt facts
       
    89            (Pattern.match (ProofContext.theory_of ctxt) (t, u) env) ts
       
    90          handle Pattern.MATCH => Seq.empty))
       
    91           (Seq.of_list (sort (int_ord o pairself snd) (Net.unify_term facts t)));
       
    92 
       
    93 (* Instantiate variables that only occur free in conlusion *)
       
    94 fun inst_extra_vars ctxt dom cs =
       
    95   let
       
    96     val vs = fold Term.add_vars (maps snd cs) [];
       
    97     fun insts [] inst = Seq.single inst
       
    98       | insts ((ixn, T) :: vs') inst = Seq.maps
       
    99           (fn t => insts vs' (((ixn, T), t) :: inst))
       
   100           (Seq.of_list (case Typtab.lookup dom T of
       
   101              NONE => error ("Unknown domain: " ^
       
   102                Syntax.string_of_typ ctxt T ^ "\nfor term(s) " ^
       
   103                commas (maps (map (Syntax.string_of_term ctxt) o snd) cs))
       
   104            | SOME ts => ts))
       
   105   in Seq.map (fn inst =>
       
   106     (inst, map (apsnd (map (subst_Vars (map (apfst fst) inst)))) cs))
       
   107       (insts vs [])
       
   108   end;
       
   109 
       
   110 (* Check whether disjunction is valid in given state *)
       
   111 fun is_valid_disj ctxt facts [] = false
       
   112   | is_valid_disj ctxt facts ((Ts, ts) :: ds) =
       
   113       let val vs = rev (map_index (fn (i, T) => Var (("x", i), T)) Ts)
       
   114       in case Seq.pull (valid_conj ctxt facts empty_env
       
   115         (map (fn t => subst_bounds (vs, t)) ts)) of
       
   116           SOME _ => true
       
   117         | NONE => is_valid_disj ctxt facts ds
       
   118       end;
       
   119 
       
   120 val show_facts = ref false;
       
   121 
       
   122 fun string_of_facts ctxt s facts = space_implode "\n"
       
   123   (s :: map (Syntax.string_of_term ctxt)
       
   124      (map fst (sort (int_ord o pairself snd) (Net.content facts)))) ^ "\n\n";
       
   125 
       
   126 fun print_facts ctxt facts =
       
   127   if !show_facts then message (fn () => string_of_facts ctxt "Facts:" facts)
       
   128   else ();
       
   129 
       
   130 fun valid ctxt rules goal dom facts nfacts nparams =
       
   131   let val seq = Seq.of_list rules |> Seq.maps (fn (th, ps, cs) =>
       
   132     valid_conj ctxt facts empty_env ps |> Seq.maps (fn (env as (tye, _), is) =>
       
   133       let val cs' = map (fn (Ts, ts) =>
       
   134         (map (Envir.typ_subst_TVars tye) Ts, map (Envir.subst_vars env) ts)) cs
       
   135       in
       
   136         inst_extra_vars ctxt dom cs' |>
       
   137           Seq.map_filter (fn (inst, cs'') =>
       
   138             if is_valid_disj ctxt facts cs'' then NONE
       
   139             else SOME (th, env, inst, is, cs''))
       
   140       end))
       
   141   in
       
   142     case Seq.pull seq of
       
   143       NONE => (tracing (string_of_facts ctxt "Countermodel found:" facts); NONE)
       
   144     | SOME ((th, env, inst, is, cs), _) =>
       
   145         if cs = [([], [goal])] then SOME (ClPrf (th, env, inst, is, []))
       
   146         else
       
   147           (case valid_cases ctxt rules goal dom facts nfacts nparams cs of
       
   148              NONE => NONE
       
   149            | SOME prfs => SOME (ClPrf (th, env, inst, is, prfs)))
       
   150   end
       
   151 
       
   152 and valid_cases ctxt rules goal dom facts nfacts nparams [] = SOME []
       
   153   | valid_cases ctxt rules goal dom facts nfacts nparams ((Ts, ts) :: ds) =
       
   154       let
       
   155         val _ = message (fn () => "case " ^ commas (map (Syntax.string_of_term ctxt) ts));
       
   156         val params = rev (map_index (fn (i, T) =>
       
   157           Free ("par" ^ string_of_int (nparams + i), T)) Ts);
       
   158         val ts' = map_index (fn (i, t) =>
       
   159           (subst_bounds (params, t), nfacts + i)) ts;
       
   160         val dom' = fold (fn (T, p) =>
       
   161           Typtab.map_default (T, []) (fn ps => ps @ [p]))
       
   162             (Ts ~~ params) dom;
       
   163         val facts' = fold (fn (t, i) => Net.insert_term op =
       
   164           (t, (t, i))) ts' facts
       
   165       in
       
   166         case valid ctxt rules goal dom' facts'
       
   167           (nfacts + length ts) (nparams + length Ts) of
       
   168           NONE => NONE
       
   169         | SOME prf => (case valid_cases ctxt rules goal dom facts nfacts nparams ds of
       
   170             NONE => NONE
       
   171           | SOME prfs => SOME ((params, prf) :: prfs))
       
   172       end;
       
   173 
       
   174 (** proof replaying **)
       
   175 
       
   176 fun thm_of_cl_prf thy goal asms (ClPrf (th, (tye, env), insts, is, prfs)) =
       
   177   let
       
   178     val _ = message (fn () => space_implode "\n"
       
   179       ("asms:" :: map Display.string_of_thm asms) ^ "\n\n");
       
   180     val th' = Drule.implies_elim_list
       
   181       (Thm.instantiate
       
   182          (map (fn (ixn, (S, T)) =>
       
   183             (Thm.ctyp_of thy (TVar ((ixn, S))), Thm.ctyp_of thy T))
       
   184                (Vartab.dest tye),
       
   185           map (fn (ixn, (T, t)) =>
       
   186             (Thm.cterm_of thy (Var (ixn, Envir.typ_subst_TVars tye T)),
       
   187              Thm.cterm_of thy t)) (Vartab.dest env) @
       
   188           map (fn (ixnT, t) =>
       
   189             (Thm.cterm_of thy (Var ixnT), Thm.cterm_of thy t)) insts) th)
       
   190       (map (nth asms) is);
       
   191     val (_, cases) = dest_elim (prop_of th')
       
   192   in
       
   193     case (cases, prfs) of
       
   194       ([([], [_])], []) => th'
       
   195     | ([([], [_])], [([], prf)]) => thm_of_cl_prf thy goal (asms @ [th']) prf
       
   196     | _ => Drule.implies_elim_list
       
   197         (Thm.instantiate (Thm.match
       
   198            (Drule.strip_imp_concl (cprop_of th'), goal)) th')
       
   199         (map (thm_of_case_prf thy goal asms) (prfs ~~ cases))
       
   200   end
       
   201 
       
   202 and thm_of_case_prf thy goal asms ((params, prf), (_, asms')) =
       
   203   let
       
   204     val cparams = map (cterm_of thy) params;
       
   205     val asms'' = map (cterm_of thy o curry subst_bounds (rev params)) asms'
       
   206   in
       
   207     Drule.forall_intr_list cparams (Drule.implies_intr_list asms''
       
   208       (thm_of_cl_prf thy goal (asms @ map Thm.assume asms'') prf))
       
   209   end;
       
   210 
       
   211 
       
   212 (** external interface **)
       
   213 
       
   214 fun coherent_tac rules ctxt = SUBPROOF (fn {prems, concl, params, context, ...} =>
       
   215   rtac (rulify_elim_conv concl RS equal_elim_rule2) 1 THEN
       
   216   SUBPROOF (fn {prems = prems', concl, context, ...} =>
       
   217     let val xs = map term_of params @
       
   218       map (fn (_, s) => Free (s, the (Variable.default_type context s)))
       
   219         (Variable.fixes_of context)
       
   220     in
       
   221       case valid context (map mk_rule (prems' @ prems @ rules)) (term_of concl)
       
   222            (mk_dom xs) Net.empty 0 0 of
       
   223          NONE => no_tac
       
   224        | SOME prf =>
       
   225            rtac (thm_of_cl_prf (ProofContext.theory_of context) concl [] prf) 1
       
   226     end) ctxt 1) ctxt;
       
   227 
       
   228 fun coherent_meth rules ctxt =
       
   229   Method.METHOD (fn facts => coherent_tac (facts @ rules) ctxt 1);
       
   230 
       
   231 val setup = Method.add_method
       
   232   ("coherent", Method.thms_ctxt_args coherent_meth, "Prove coherent formula");
       
   233 
       
   234 end;