src/HOL/Multivariate_Analysis/Uniform_Limit.thy
changeset 61969 e01015e49041
parent 61810 3c5040d5694a
child 61973 0c7e865fa7cb
equal deleted inserted replaced
61968:e13e70f32407 61969:e01015e49041
   205   proof eventually_elim
   205   proof eventually_elim
   206     fix n assume n: "n \<ge> N"
   206     fix n assume n: "n \<ge> N"
   207     show "\<forall>x\<in>X. dist (f n x) (?f x) < e"
   207     show "\<forall>x\<in>X. dist (f n x) (?f x) < e"
   208     proof
   208     proof
   209       fix x assume x: "x \<in> X"
   209       fix x assume x: "x \<in> X"
   210       with assms have "(\<lambda>n. f n x) ----> ?f x" 
   210       with assms have "(\<lambda>n. f n x) \<longlonglongrightarrow> ?f x" 
   211         by (auto dest!: Cauchy_convergent uniformly_Cauchy_imp_Cauchy simp: convergent_LIMSEQ_iff)
   211         by (auto dest!: Cauchy_convergent uniformly_Cauchy_imp_Cauchy simp: convergent_LIMSEQ_iff)
   212       with \<open>e/2 > 0\<close> have "eventually (\<lambda>m. m \<ge> N \<and> dist (f m x) (?f x) < e/2) sequentially"
   212       with \<open>e/2 > 0\<close> have "eventually (\<lambda>m. m \<ge> N \<and> dist (f m x) (?f x) < e/2) sequentially"
   213         by (intro tendstoD eventually_conj eventually_ge_at_top)
   213         by (intro tendstoD eventually_conj eventually_ge_at_top)
   214       then obtain m where m: "m \<ge> N" "dist (f m x) (?f x) < e/2" 
   214       then obtain m where m: "m \<ge> N" "dist (f m x) (?f x) < e/2" 
   215         unfolding eventually_at_top_linorder by blast
   215         unfolding eventually_at_top_linorder by blast