equal
deleted
inserted
replaced
214 fix n show "- ?d (A n) \<le> - ?d (A (Suc n))" using dA_mono[of n] by auto |
214 fix n show "- ?d (A n) \<le> - ?d (A (Suc n))" using dA_mono[of n] by auto |
215 qed |
215 qed |
216 have A: "incseq A" by (auto intro!: incseq_SucI) |
216 have A: "incseq A" by (auto intro!: incseq_SucI) |
217 from finite_Lim_measure_incseq[OF _ A] \<open>range A \<subseteq> sets M\<close> |
217 from finite_Lim_measure_incseq[OF _ A] \<open>range A \<subseteq> sets M\<close> |
218 M'.finite_Lim_measure_incseq[OF _ A] |
218 M'.finite_Lim_measure_incseq[OF _ A] |
219 have convergent: "(\<lambda>i. ?d (A i)) ----> ?d (\<Union>i. A i)" |
219 have convergent: "(\<lambda>i. ?d (A i)) \<longlonglongrightarrow> ?d (\<Union>i. A i)" |
220 by (auto intro!: tendsto_diff simp: sets_eq) |
220 by (auto intro!: tendsto_diff simp: sets_eq) |
221 obtain n :: nat where "- ?d (\<Union>i. A i) / e < real n" using reals_Archimedean2 by auto |
221 obtain n :: nat where "- ?d (\<Union>i. A i) / e < real n" using reals_Archimedean2 by auto |
222 moreover from order_trans[OF decseq_le[OF decseq convergent] dA_less] |
222 moreover from order_trans[OF decseq_le[OF decseq convergent] dA_less] |
223 have "real n \<le> - ?d (\<Union>i. A i) / e" using \<open>0<e\<close> by (simp add: field_simps) |
223 have "real n \<le> - ?d (\<Union>i. A i) / e" using \<open>0<e\<close> by (simp add: field_simps) |
224 ultimately show ?thesis by auto |
224 ultimately show ?thesis by auto |
259 show ?thesis |
259 show ?thesis |
260 proof (safe intro!: bexI[of _ "\<Inter>i. A i"]) |
260 proof (safe intro!: bexI[of _ "\<Inter>i. A i"]) |
261 show "(\<Inter>i. A i) \<in> sets M" using \<open>\<And>n. A n \<in> sets M\<close> by auto |
261 show "(\<Inter>i. A i) \<in> sets M" using \<open>\<And>n. A n \<in> sets M\<close> by auto |
262 have "decseq A" using A by (auto intro!: decseq_SucI) |
262 have "decseq A" using A by (auto intro!: decseq_SucI) |
263 from A(1) finite_Lim_measure_decseq[OF _ this] N.finite_Lim_measure_decseq[OF _ this] |
263 from A(1) finite_Lim_measure_decseq[OF _ this] N.finite_Lim_measure_decseq[OF _ this] |
264 have "(\<lambda>i. ?d (A i)) ----> ?d (\<Inter>i. A i)" by (auto intro!: tendsto_diff simp: sets_eq) |
264 have "(\<lambda>i. ?d (A i)) \<longlonglongrightarrow> ?d (\<Inter>i. A i)" by (auto intro!: tendsto_diff simp: sets_eq) |
265 thus "?d (space M) \<le> ?d (\<Inter>i. A i)" using mono_dA[THEN monoD, of 0 _] |
265 thus "?d (space M) \<le> ?d (\<Inter>i. A i)" using mono_dA[THEN monoD, of 0 _] |
266 by (rule_tac LIMSEQ_le_const) auto |
266 by (rule_tac LIMSEQ_le_const) auto |
267 next |
267 next |
268 fix B assume B: "B \<in> sets M" "B \<subseteq> (\<Inter>i. A i)" |
268 fix B assume B: "B \<in> sets M" "B \<subseteq> (\<Inter>i. A i)" |
269 show "0 \<le> ?d B" |
269 show "0 \<le> ?d B" |