equal
deleted
inserted
replaced
2039 using assms dynkin_subset[OF E(1)] by simp |
2039 using assms dynkin_subset[OF E(1)] by simp |
2040 ultimately show ?thesis |
2040 ultimately show ?thesis |
2041 using assms by (auto simp: dynkin_def) |
2041 using assms by (auto simp: dynkin_def) |
2042 qed |
2042 qed |
2043 |
2043 |
|
2044 lemma sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]: |
|
2045 assumes "Int_stable G" |
|
2046 and closed: "G \<subseteq> Pow \<Omega>" |
|
2047 and A: "A \<in> sigma_sets \<Omega> G" |
|
2048 assumes basic: "\<And>A. A \<in> G \<Longrightarrow> P A" |
|
2049 and empty: "P {}" |
|
2050 and compl: "\<And>A. A \<in> sigma_sets \<Omega> G \<Longrightarrow> P A \<Longrightarrow> P (\<Omega> - A)" |
|
2051 and union: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> sigma_sets \<Omega> G \<Longrightarrow> (\<And>i. P (A i)) \<Longrightarrow> P (\<Union>i::nat. A i)" |
|
2052 shows "P A" |
|
2053 proof - |
|
2054 let ?D = "{ A \<in> sigma_sets \<Omega> G. P A }" |
|
2055 interpret sigma_algebra \<Omega> "sigma_sets \<Omega> G" |
|
2056 using closed by (rule sigma_algebra_sigma_sets) |
|
2057 from compl[OF _ empty] closed have space: "P \<Omega>" by simp |
|
2058 interpret dynkin_system \<Omega> ?D |
|
2059 by default (auto dest: sets_into_space intro!: space compl union) |
|
2060 have "sigma_sets \<Omega> G = ?D" |
|
2061 by (rule dynkin_lemma) (auto simp: basic `Int_stable G`) |
|
2062 with A show ?thesis by auto |
|
2063 qed |
|
2064 |
2044 end |
2065 end |